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ABSTRACT 

Over the last few decades, the Internet has grown from a network that connected two 

research Universities to a juggernaut that encompasses the whole world with over 4.1 

billion users as of July 2018, with a growth rate of 1052% from 2000-2018 [47]. Modern 

internet supports a wide variety of features and services like cloud computing and storage, 

social networking, content services, blogs and social interactions, Online banking and 

shopping, etc. Alongside the development of the internet, technologies relating to sensors 

[1,2,3,4], wireless communications [5,6,7], and mobile computing have seen an 

unprecedented growth [8,9,10], which has contributed to the development of a new 

paradigm: Internet of Things (IoT). The core concept of IoT involves forming connected 

devices that can be accessed ubiquitously from anywhere. These IoT devices have sensors 

and some processing and programming capabilities to support smart or Intelligent 

operations. Smart devices include wearables like smart watches, shoes, glasses, smart 

phones, smart refrigerators, smart cars, etc. This fast-paced growth of the internet and IoT 

infrastructures and services has introduce a challenging security problem due to the 

exponential growth in vulnerabilities and potential exploitations by cyber attackers. There 

is a dire need for an effective means to secure the cyber space against any type of threats 

that are known or unknown. This research presents a methodology to design Anomaly 

Behavior based Intrusion Detection Systems (AB-IDS) to secure networking and IoT 

protocols.  
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An AB-IDS has a complete understanding of the semantics of the normal behavior of its 

target system, consequently allowing it to detect any malicious attacks on the system that 

forces it to operate abnormally. This approach of monitoring and accurately characterizing 

the normal behavior instead of looking for specific attack signatures (as done by signature-

based IDS’ [15]) allows the AB-IDS to detect new and modified attacks. Since each 

protocol has its own specification, it is hard to develop one AB-IDS that is able to secure 

all the protocols. Instead, we adopt a more granular approach that involves developing 

multiple micro AB-IDS’ where each one is specialized in detecting anomalous behavior in 

its protocol, and the results from each of these micro AB-IDS’ are aggregated to present a 

wholistic picture of the current operational state of the complete system. Designing of these 

micro intrusion detection systems is a time-consuming task that requires an in depth 

understanding of the protocols. To aid this research approach, in this dissertation we 

develop a methodology to design the micro AB-IDS’ using machine learning models. 

 

The approach methodology involves following steps: 1. Threat modelling analysis; 2. 

Feature selection and protocol foot printing to characterize the behavior of the protocol; 

and 3. Use the protocol foot printing data structures to develop machine learning models 

that characterize accurately the normal behavior of the protocol to be protected by the micro 

AB-IDS. The threat modelling provides a formal approach to model the behavior of the 

protocol, identify potential attack vectors that target the protocols and develop mechanisms 

to protect protocol operations against these attack vectors. The feature selection step 

involves selection of correct features that helps characterize the behavior of the protocol. 



15 
 

This step also involves designing and using different innovative data structures that help 

capture/represent the behavior of the protocol. In our research we concluded that 

Observation flows (OF) and n-grams are powerful data structures that can be used to 

characterize the behavior of the protocols. The last step involves developing machine 

learning models using the features obtained in Step 2 to differentiate the normal behavior 

of the machine learning model from the abnormal. We have evaluated our approach by 

designing micro intrusion detect systems to detect attacks on the Wi-Fi protocol, the DNS 

protocol and the HTML protocol.  The experimental results show that the IDS’ designed 

using this approach have a very high accuracy with very low false positives and false 

negatives for new and modified attacks. 
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CHAPTER 1: INTRODUCTION 

1.1 MOTIVATION 

Over the last few decades, the Internet has grown from a network that connected two 

research Universities to a juggernaut that encompasses the whole world with over 4.1 

billion users as of July 2018 with a growth rate of 1052% from 2000-2018 [1]. Modern 

internet supports a wide variety of features and services like, cloud computing and storage, 

social networking, content delivery services, blogs and social interactions, online banking 

and shopping, just to name a few. Deployment of these technologies has made the internet 

a household commodity. Alongside the development of the internet, technologies relating 

to sensors [2,3,4,5], wireless communications [6,7], and mobile computing have seen an 

unprecedented growth [8], which has contributed to the introduction of the new paradigm: 

Internet of Things (IoT). 

 

Internet of Things is a paradigm that will enable all devices and objects to have the 

capability of being connected, sense surroundings, communicate over multiple 

communication networks, and connect with other Internet enabled devices and services 

[2,3,4,5,8]. The core concept of IoT involves interfacing all devices with sensor data and 

consequently making the device ‘smart’ by providing a wide range of intelligent services 

that cover all aspects of our life and economy. Smart devices are proliferating our daily 

lives rapidly, wherein wearable technology (see Figure 1.1) like smart watches, shoes, 
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glasses, devices like smart phones, smart refrigerators, smart cars, etc. are becoming an 

integral part of our lives. 

 

 

Figure 1.1: Rise of wearables and future wearable technology [16] 

 

The core technologies of IoT are not new. Sensing technologies have been used in the past 

on factory manufacturing floors, for monitoring and tracking livestock, etc. The idea of 

machine to machine communication is also not new as that is the core concept of the 

Internet. IoT is an evolution in the use of these technologies in terms of number of devices, 

the type of devices and the services provided via these devices [3]. IoT promises, it will 

lead to the development of a new generation of devices that will provide personalized 

services; services that are tailored and modified to each user’s needs and demands. 

 

For instance, let’s consider smart speakers like Google Home [9] or Amazon Alexa [10] 

which are traditional speakers, with a processor (attached to a microphone) connected to 
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the internet (Wired or wireless). These smart speakers’ interface with the user via voice 

commands and provide services like playing music of the internet that is tailored to the 

music favored by the user. Smart devices like the Apple watch and fitness trackers will 

soon find their way into the healthcare market, allowing doctors to monitor the health of 

their patients, perform predictive data analytics and thus help save lives and significantly 

improve the quality of healthcare services. 

 

The number of IoT smart objects is expected to reach 212 Billion entities by the end of the 

year 2020 (see Figure 1.2) [11]. This growth will constitute an unprecedented increase in 

internet traffic and wireless network traffic. It is predicted that IoT will impact the economy 

in the range of $3.9 trillion to $11.1 trillion by 2025 [12]. All these statistical observations 

point to a fast-paced growth of the IoT industry till 2025, which will result in ubiquitous 

presence of smart devices that will be monitoring their users in different capacities, sharing 

data with each other and with services on the internet. The downside to this fast-paced 

growth in the IoT industry is the fact that the vulnerability of IoT devices has grown 

exponentially and made their security a major research challenge. 
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Figure 1.2: Growth of IoT by 2020 

 

Cyber attackers can compromise IoT devices to execute attacks to hinder the operations of 

large computer networks, factories, nuclear powerplants, destroy global financial systems, 

power grids, water distribution systems etc. To make the situation worse, we are observing 

an alarming trend of increasing attack sophistication while reduction in the knowledge 

required to launch sophisticated attacks as shown in Figure 1.3.  

 

Figure 1.3: Attack sophistication versus intruder technical knowledge 
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Furthermore, the attack propagation time used to range in weeks in the 1980s now ranges 

to a fraction of a second to reach a sizable number of Internet enabled devices as shown in 

Figure 1.4. For instance, in May 2017 WannaCry attack was able to attack over 200,000 

computers in 150 countries in 4 days where it was propagating at the speed of 3600 

computers per hour [13]. This attack would have had impacted more systems at even a 

faster rate if aimed at the deployed IoT devices and sensors. 

 

 

Figure 1.4- The timeline of cyber-threads scope of damage and impact time [12] 

 

To address the security challenges associated with IoT infrastructure and services, we need 

a paradigm shift in how we monitor, analyze and protect their operations and services. 
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1.2 PROBLEM STATEMENT 

With the growth of internet, cloud computing and IoT, smart devices have proliferated into 

our daily lives. These smart devices support a wide variety services and applications, which 

has resulted in a plethora of networking protocols.  

 

 

Figure 1.5- Network Layers and Protocols 

 

Figure 1.5 highlights a subset of protocols deployed on the internet. Each of these protocols 

is vulnerable to attacks and needs to be secured. It is difficult to design one IDS that is able 

to detect attacks on all the protocols. Yousef et al. [14], presented an approach to design a 

multi-level intrusion detection system (ML-IDS) as shown in figure 1.6 to secure the 

computer networks. Yousef et al. proposed building multiple intrusion detection systems 
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called micro intrusion detection systems to secure individual protocols and performing 

decision fusion to detect threats on the whole network stack.  

 

Figure 1.6- Multi-Level Intrusion Detection System (ML-IDS) 

 

This research extends that work and presents a methodology that aids in developing micro 

intrusion detection systems to secure each protocol, and the results from each of these 

micro AB-IDS’ are aggregated by the ML-IDS. The proposed methodology has 3 steps: 1. 

Threat modelling analysis; 2. Feature selection to characterize the behavior of the protocol; 

3. Use the selected features to develop machine learning models that characterize 

accurately the normal behavior. Considering the projected growth of the internet and the 

growth of IoT systems, it is critically important to formalize this methodology to design 

AB-IDS’ that can secure each protocol. 
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1.3 RESEARCH OBJECTIVES 

Our main goal for this research is to design a general methodology that can streamline the 

development process of micro IDS for different protocols.  The specific goals of this 

research are highlighted as follows: 

• Develop a methodology to design specialized AB-IDS’ that can detect attacks on 

their protocols. This will help the user achieve proactive intrusion detection capabilities 

that can detect malicious activities that trigger anomalous behavior including zero-day 

attacks. 

• Develop innovative data structures like ObservationFlow (OF) for each protocol 

type, that will be used to accurately and efficiently characterize the normal behaviors of 

each protocol. These footprint data structures will lead to significant reduction of the 

amount of data that need to be monitored and stored in real-time. These footprints will 

model normal and abnormal operations of different networking protocols. 

• Evaluate the performance of the developed micro AB-IDS on the Wi-Fi, DNS and 

the HTML protocols. In the evaluation, different performance statistics like accuracy, false 

positives and false negatives will be used. 

 

1.4 DISSERTATION ORGANIZATION 

The remaining chapters of the dissertation are as follows: 

Chapter 2 describes the background and the related work on intrusion detection systems 

and data mining techniques. We discuss the work done by Axelsson et al. in [15], and 
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follow their taxonomy for Intrusion Detection Systems, discussing signature-based 

intrusion detection systems, anomaly-based intrusion detection systems, and compound 

intrusion detection system. We then discuss different characteristics of intrusion detection 

systems like the time of detection of the intrusion detection system, granularity of intrusion 

detection system, etc. We then give a brief introduction to machine learning, classification 

learning, associative learning and clustering, and highlight some machine learning 

algorithms like Isolation forest, and C4.5 that were used in this research.  

 

In Chapter 3, we present our AB-IDS development methodology. We begin by presenting 

our architecture for IoT devices. We then present our threat modelling methodology 

designed to model IoT devices. We apply this methodology to detect threats and design 

intrusion detection systems for IoT/networking protocols. We discuss data structures like 

the observation flow, and n-grams that we use to model the normal behavior of the protocol. 

 

 In Chapter 4, we apply our methodology to design an IDS to secure IEEE 802.11 (Wi-Fi 

protocol). We describe the Wi-Fi protocol and its operational state diagram. We then 

present related work of Intrusion detection systems for the Wi-Fi protocol. We then apply 

our intrusion detection system to Wi-Fi protocol by performing threat modelling on the 

Wi-Fi protocol, using the threat modelling to identify vulnerabilities. We then model the 

normal behavior of the Wi-Fi protocol using n-grams and observation flows and train 

machine learning models that we use to accurately differentiate normal behavior of the Wi-
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Fi protocol from the abnormal behavior. We then present the results of evaluating of our 

approach on different datasets.  

 

 In Chapter 5, we apply our methodology to design an IDS to secure the DNS protocol. We 

introduce the DNS protocol and describe its normal operations. We discuss the related 

work addressing the security of the DNS protocol. Then we apply our IDS design 

methodology to develop an AB-IDS for the DNS protocol. We use n-grams and 

observation flows to characterize the normal behavior of the DNS protocol. The n-grams 

and extracted characteristics feature set from the traffic is used to train machine learning 

models to differentiate the normal behavior of the DNS protocol from the abnormal. We 

then present the experimental results of our approach. 

 

In Chapter 6, we present an AB-IDS developed to detect attacks on the HTML protocol. 

We introduce the HTML protocol and describe its operation. We discuss related work that 

focuses on HTML protocol security. We introduce a static analysis-based approach to 

detect malicious HTML files. Following the introduction of the static analysis-based 

approach, we introduce a dynamic analysis-based approach to detect malicious HTML 

files, wherein suspicious HTML files are opened in a Sandbox and the runtime flow of the 

HTML file is analyzed to conclude on the normality of the file. We then present the 

experimental results for our approach. 

 

In Chapter 7, we present the conclusion and future work. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

2.1 INTRODUCTION 

In this dissertation we present a methodology to develop AB-based Intrusion Detection 

Systems (IDS) for different Networking protocols. In this chapter we present the 

background for this research approach. We begin by discussing the IDS taxonomy 

presented by Axelsson [15]. We discuss the types of intrusion detection systems, 

characteristics of intrusion detection system and provide a brief overview of the machine 

learning algorithms. 

 

2.2 OVERVIEW OF THE INTRUSION DETECTION SYSTEM TAXONOMIES: 

Axelsson, el at. [15] presented a complete taxonomy of intrusion detection systems. 

According to Axelsson, Intrusion Detection Systems are like ‘Burglar Alarms’, which are 

built with the aim of protecting a system against attacks by sounding off warnings on 

detection of an attack. 

 

According to Axelsson intrusion detection systems are of three major types: Anomaly 

based intrusion detection systems, signature-based intrusion detection systems, and 

compound intrusion detection systems. 
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2.2.1 ANOMALY BASED INTRUSION DETECTION SYSTEMS: 
According to Axelsson and [17][18][19][20], an anomaly-based intrusion detection system 

is designed to model the normal behavior of the system and makes an inherent assumption 

that any attack will lead to an anomalous behavior.  Designing and implementation of 

anomaly-based intrusion detection systems begins with collection of information on what 

constitutes normal behavior for the system that is called the “target system”, or the “target”. 

Anomaly based intrusion detection systems use this understanding of the normal behavior 

of the target to build models that allow classification of harmful anomalies from the normal 

behavior. 

 

 Anomaly based intrusion detection systems can be classified into two types based on the 

method used to build models that identify the normal behavior of the system: Self learning 

and Programmed (supervised). 

 

2.2.1.1 Self Learning 

Self-learning systems as the name suggests, perform the task of learning the normal 

behavior on their own. They observe the target at runtime and have the capabilities to judge 

and extract features that are characteristics of the target’s normal behavior. They then build 

models that incorporate these characteristics. The systems that fall in this category may use 

different approaches to model the normal behavior of the system. Some of the approaches 

involve the use of stochastic modeling, which may involve formulation of rules that are 

able to mark the conditions of normality of the system or use of distance vectors to measure 
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the difference of certain measured features at runtime and classify certain events as 

abnormal. Artificial neural networks and clustering algorithms have been used to build 

such systems. 

 

2.2.1.2 Programmed/Supervised learning 

In case of a programmed intrusion detection system [46] [47] [48] [49] [50], a third party 

other than the original intrusion detection system itself, teaches the system by feeding it 

with information to detect abnormal events. This is generally done by feeding the system 

with different parameters that have statistical values that help deciding if the system is 

operating normally or not. 

 

2.2.2 SIGNATURE BASED INTRUSION DETECTION SYSTEMS 
The signature-based intrusion detection system [21][22][23][24][25][26][27][28][29] 

operate on the knowledge obtained from analyzing the behavior of known intrusions on 

the target. In a signature-based intrusion detection system, the IDS check’s for signs of 

signatures of previously known attacks or intrusions, by comparing current behavior to a 

set of known signatures stored in a database. Whenever there is a match, the intrusion 

detection system gives an alert.  In a signature-based intrusion detection system, the system 

does not model the normal behavior of the target. The Intrusion detection systems of this 

type are programmed intrusion detection systems, where in the intrusions are programmed 

as either state-based models, or audit event (string matching models). 
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2.2.3 COMPOUND INTRUSION DETECTION SYSTEMS 
Compound intrusion detection systems are a composite of a signature-based intrusion 

detection systems and anomaly-based intrusion detection systems. These systems generally 

use signature-based detection on normal traffic. 

 

2.3 SYSTEM CHARACTERISTICS OF INTRUSION DETECTION SYSTEMS 

System characteristics of intrusion detection systems are independent of the type of 

detection the intrusion detection system performs.  

 

2.3.1 TIME OF DETECTION 

Intrusion Detection Systems can be either Real Time (Near Real Time) Intrusion Detection 

Systems [43][44][45] or Non-Real Time Intrusion Detection Systems. The Real Time 

detection Systems are systems that check for Intrusions at runtime and respond to attacks 

in a timely manner. However, these systems must run their algorithms with low overhead 

to be deployed. Non-Real Time Intrusion Detection Systems analyze network traffic offline 

and can run very sophisticated models to improve detection and accuracy.  
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2.3.2 GRANULARITY OF DETECTION 
Granularity of Detection is the smallest unit of Data that is processed by the Intrusion 

Detection System. The Intrusion Detection System can process data continuously or in 

small groups or batches. 

 

2.3.3 SOURCE OF AUDIT DATA 

Source of Audit Data is the data input source for the Intrusion Detection system. Source of 

Audit Data is either network packets tapped directly from the network interface or system 

logs like Kernel logs that are maintained by the operating system.  

 

2.3.4 RESPONSE TO DETECTED INTRUSIONS 
Based on the Response to detected intrusions, Intrusion Detection Systems can be of two 

types: Passive and Active systems, which are discussed below. 

 

2.3.4.1 Passive Response Systems 

Passive response systems are Intrusion Detection Systems that respond to detection of an 

intrusion on the system by sending an alarm. They warn the user of the attack, but they do 

not take any preventive actions or countermeasures against the detected attacks.  

 

2.3.4.2 Active Response Systems 

Active response systems are intrusion detection systems that respond to detection of an 

intrusion on the network by sounding an alarm and then taking counter measures against 
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the detected attack. The counter measures range from closing of the network connections, 

to even attacking the resources used by the attacker. 

 

2.3.5 LOCUS OF DATA PROCESSING 
The data processed in the intrusion detection system can be either performed at a central 

location or at distributed locations. 

 

2.3.6 SECURITY 
This is to measure the security of the intrusion detection system itself from attacks, wherein 

this measure determines how secure an intrusion detection system is from attacks. 

 

2.3.7 DEGREE OF INTER-OPERABILITY: 
This is a measure of the intrusion detection systems ability to operate with other intrusion 

detection systems. 

 

2.4 MACHINE LEARNING AND DATA MINING 

The amount of data that is collected in databases today is growing exponentially. This 

increase in the amount of collected data can be attributed to many reasons, such as the 

increasing computing power and number of connected devices, the increase in the channel 

capacity of computer networks, faster memory devices, to just mention a few. It has been 
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observed that as the size of data increases, the ability of a human to make sense out of the 

data decreases rapidly. This has brought about the need for means to process the data and 

obtain knowledge from mining and analyzing the collected data. 

 

Machine learning is the study of algorithms and statistical models to obtain knowledge on 

how networks and protocols operate. Machine learning is generally of two types: 

Supervised machine learning where the data is marked into classes for training by a human, 

Unsupervised machine learning where the knowledge is gained without human input. Data 

Mining is the process of finding patterns in data sets by the means of use of various data 

mining algorithms. The data mining process can be automatic or semi-automatic involving 

human interference. These algorithms are used to learn patterns from the data and thus 

learn conditions or patterns of behavior that help in prediction of a behavior of another data 

set having similar patterns. 

 

The event space in data mining algorithms [32][33][34][35] represents the space or the set 

that holds all the events or the data points that are to be analyzed. Data mining could be 

viewed as a search to look for conditional statements that are able to group all the elements 

of the set with correct descriptions. 

 

Machine learning algorithms are given inputs in the form of files that holds the data to be 

analyzed. The data rows describe specific instances, while the data columns describe 
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different attributes. The attributes that are selected to represent the data set to be used by 

the data mining algorithm are typically defined by a process called Attribute Selection [36]. 

On completion of training on the data in the databases using different machine learning 

algorithms, the performance of the trained models are analyzed using methods like k-fold 

cross validation. There are a number of means by which the trained on a particular data set 

can be represented. The methods in which these results can be represented are discussed 

below. 

 

Decision tables are the easiest means to represent the output of the learning algorithms, 

where in it is a table with conditions in the first column and the result of the machine 

learning algorithm in the next. Decision Trees are tree like structures that represent the 

results of the machine learning algorithms. The nodes represent the conditions to be taken 

while the leaves represent the class of the result. Figure 2.1 below shows an example of a 

Decision Tree. 
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Figure 2.1: Decision Tree 

Classification Rules are the simplest means to represent the results of machine learning 

algorithms. They provide the conditions in form of simple condition statements that can be 

used as test to classify the results. The conditional statements can also be ANDED together 

with other conditional statements to obtain longer rules. Example rules are shown in the 

Table 2.1 below 
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Table 2.1: Classification Rules 

RULES 1: IF FS1<97 AND FS2> 279732 AND FS3>1020 THEN TRAFFIC 

IS NORMAL; 

RULES 2: IF FS<1881 AND FS2> 591472 AND FS4>505 THEN TRAFFIC 

IS NORMAL 
 

 

Clusters are obtained as a result of machine learning when a clustering algorithm is used 

instead of a classification algorithm. The Clusters that are obtained help representing the 

distance of the instance from the center of the cluster. Clusters can be mapped in two-

dimensional space which is the simplest form to represent the cluster. The clusters could 

also be represented in multi-dimensional space. Figure 2.2 below shows an example of a 

cluster representation. 
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Figure 2.2: Clustering Example 

 

• Learning Types: 

According to Witten and Frank el in [7] three different types machine learning 

approaches. The choice of the approach used depends on the type of data that is being 

processed and the application of the resulting conditions or rules from machine learning. 

These machine learning approaches are discussed below. 
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i. Classification Learning: 

Classification learning involves using algorithms to understand the conditions which 

allow classification of unseen examples into predefined classes. Thus, classification 

learning allows default classification of the unseen data into different classes. 

 

ii. Association Learning: 

Association Learning allows the building of associations between different unseen 

examples by predicting attributes as well as classes. Association learning helps in 

learning strong rules of association between attributes and not just their classes. 

Association learning involves use of different algorithms like Apriori Algorithm [37], 

Eclat Algorithm [38], FP-growth Algorithm [39]. 

 

iii. Clustering 

Clustering is the process of grouping together objects that are similar to each other 

compared to other objects. Clustering is generally distance based, where in the 

clusters are judged depending on the center of the clusters. Clustering is generally 

done using Centroid based clustering, Distribution- based clustering or Density-based 

clustering. Some of the clustering methods include k-means clustering [40][41]. 

 

• Machine learning algorithms  

In this section we list and describe the machine learning algorithms we used in this 

research. 
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i. Isolation forest 

Isolation forest [30] isolates observations by randomly selecting a feature to split the 

data with a random value between the maximum and the minimum values of that 

feature. As anomalies are smaller in number and have values different from the 

normal entries, they are easier to isolate. The results of the isolation forest are 

represented in term of iTrees, where the anomalies are isolated closer to the root of 

the tree. 

 

ii. C4.5 

C4.5 [31][32], is a tree-based decision tree classifier that splits its set of classified 

samples into subsets to enrich one class for each of the attributes, where the attribute 

with the highest normalize information gain is chosen. 

 

iii. Random Forest 

Random forest [33] is an ensemble learning algorithm that constructs multiple 

decision trees during the training time and outputs the mean prediction of the different 

classes at the time of classification. 

 

iv. AdaBoost 

AdaBoost [34] is a collection of weak classifiers combined by weighted sum wherein 

the results of classifiers are tweaked to in favor of instances wrongly classified by the 

previous classifier. 
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v. Ripper 

Ripper [35] is based in incremental reduced error pruning, where rules are grown one 

at a time such that the training set is split into 2; 2/3 being for growing the rules and 

1/3 for pruning the rules. Rules are built for smaller classes first. 

 

vi. Hoeffding tree 

Hoeffding tree [37] is an incremental decision tree that trains on massive data 

streams, provided that the characteristics of the data streams do not change over time. 

 

vii. Random tree 

Random tree constructs a tree using K randomly chosen attributes at each node 

allowing estimation of class probabilities based on the hold out set. 

 

viii. Support Vector Machine (SVM) 

Support vector machine [38][39] constructs a hyperplane that separates the data into 

classes and thus can be used for classification. 

 

ix. Bagging algorithm 

Bagging algorithm [40] is an ensemble learning algorithm, that generates new sub 

training sets from the given training sets and builds models on these subsets, 

combining the results by averaging or voting. 
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x. Logistic Regression 

Logistic regression [41] uses a logistic function to model a binary dependent variable, 

such that it can classify the labeled data into correct classes. 
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CHAPTER 3: DESIGN METHODOLOGY FOR INTRUSION DETECTION 

SYSTEMS 

This chapter presents a methodology for designing the AB-IDS’.  In this chapter we 

introduce the IoT Architecture and use it as an example to describe our methodology. We 

present IoT threat modelling methodology, anomaly behavior analysis, intrusion detection 

system design, and the data structures used to model the normal behavior of the analyzed 

protocols. 

 

3.1 IOT ARCHITECTURE 

IoT and cyber physical systems have become an integral part of modern computer 

networks. Thus, securing computer networks and networking protocols has to start with 

understanding the interactions between IoT devices/cyber physical devices and computer 

networks. In this section we present our IoT architecture to model the behavior of any cyber 

physical system/IoT device. We then introduce IoT threat modeling methodology to 

perform systematic threat modelling analysis of the cyber physical systems followed by 

some examples of the threat modelling analysis. The same threat modelling analysis is then 

applied to secure IoT protocols and networking protocols. 

 

IoT architecture [51] helps model the IoT/ cyber physical devices and helps understand the 

behavior of the IoT device and identify their vulnerabilities. As shown in Figure 3.1. the 

IoT modelling architecture consists of four layers: End devices, Communications, 
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Services, and Applications. Cyberattacks can be launched against the functions and 

services at each layer. 

 

 

Figure 3.1- IoT architecture 

 

The first layer (bottom layer) is composed of end devices and controllers that control these 

end devices. Devices like RFID tags, sensors like temperature sensors and actuators 

interact with the IoT users, collect data and pass it to the processing services or present the 

results of the data processed [52][53]. The second layer (communications layer) is 

responsible for providing the required connectivity and communications among all the 

sensors and actuators associated with IoT services or applications [53][54]. The 

communication technologies that can be used include Internet, satellite, mobile cellular 

networks, wireless sensor networks, and internal car network infrastructures (e.g. CAN, 



43 
 

Bluetooth, I2C, MOST). Various functionalities of the IoT devices are provided through 

the services layer i.e. the third layer. The services layer provides common middleware and 

functions to build sophisticated IoT services in the application layer. The applications layer 

provides end user applications which are used by the users to access the IoT devices. 

 

Figure 3.2- Application of IoT architecture to a Smart speaker 

 

In Figure 3.2, we apply our IoT architecture to a smart speaker system. The speakers, 

onboard controllers and microphones constitute the End devices layer of the IoT 

methodology. These speakers use Wi-Fi, Bluetooth and Ethernet to communicate with 

other devices and webservices; constituting the communications layer. These speakers use 

cloud-based speech to text conversion services (STT) [55][56][57], weather forecasting 
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services, song playing platforms like YouTube or Pandora or Spotify etc. which constitute 

the services layer of the methodology. All commercially available smart speakers have 

applications that allows the users to control these devices through their smart phones, and 

other smart devices which constitute the services layer. 

 

3.2 IOT THREAT MODELING METHODOLOGY 

Figure 3.3 shows our IoT threat modelling methodology, which helps analyze the 

vulnerabilities in cyber physical systems like IoT devices and help develop methodologies 

to remove or mitigate the impact of these vulnerabilities if they were exploited by attackers 

in the cyber physical systems. As shown in Figure 3.3, the IoT threat modelling consists of 

four layers and each layer has the following 5 tasks: Modelling the target layer’s function, 

investigating the attack surfaces for the model, investigating the targets of the attack 

surface, investigating the impact of the attack if executed, investigation of the attack 

mitigation strategies. For each layer, we first develop a model that captures the functions 

to be provided by that layer. The layer model will then be analyzed to identify the Attack 

Surface (AS) that characterizes the entry points that can be exploited by attackers to inject 

malicious events or behaviors into that layer functions. For each vulnerability or AS entry 

point, we then identify the potential target(s) that can be exploited by attackers, and the 

risk and impact if the attack was successful. The final step in each row of the IoT threat 

modelling methodology is to develop methods to mitigate or eliminate these vulnerabilities 

in order to achieve the required secure operations of the functions provided by each layer. 
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Figure 3.3. IoT threat modelling methodology 

3.2.1 ATTACK SURFACE (AS) IDENTIFICATION, IMPACT ANALYSIS AND MITIGATION 

STRATEGIES 

After modeling the operations of a given layer, we identify the attack surfaces for each 

layer model, perform risk and impact analysis, then develop mitigation methods to protect 

against each detected vulnerability. This analysis helps identify the imminent threats to the 

IoT system, and helps in securing the system in a systematic fashion. In the subsequent 

subsections, we perform AS identification, impact analysis and mitigation methods for the 

IoT system shown in Figure 3.2. 

 

• End-Devices Layer 

Table 3.1 shows the attack surface, impact, mitigation, and mitigation mechanisms 

associated with the end-devices layer. 
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Table 3.1: End Nodes Layer 

 

• Communication Layer 

Table 3.2 shows the attack surface, target, impact and mitigation mechanisms associated 

with the communication layer. 

 

Table 3.2: Communications Plane 
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• Services Layer 

Table 3.3 shows the attack surface, target, impact and mitigation mechanisms associated 

with the services layer. 

 

Table 3.3: Services Layer 

 

• End Users/ Applications Layer 

Table 3.4 shows the attack surface, target, impact and mitigation mechanisms associated 

with the End Users/Applications layer. 

 

Table 3.4: Applications Layer 
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3.3 ANOMALY BEHAVIOR ANALYSIS (AB-ANALYSIS) 

The AB-Analysis approach aims at the analyzing the normal behavior of the protocol. The 

normal operations of a system can be represented by an n-dimensional data structure as 

shown in Figure 3.4. As long as the system is performing normally, its operation point is 

confined to the normal operation regions. When an anomalous event occurs, the operation 

point of the system moves outside the normal region and consequently, it can be detected 

by the AB module. Countermeasures are then taken to bring the operational point back 

inside the cube. We have applied the concept of AB analysis to detect intrusions on 

computer networks or attacks on different protocols [46][47][49][50]. 

 

 

Figure 3.4: Anomaly Behavior Analysis 

3.4 INTRUSION DETECTION SYSTEM DESIGN METHODOLOGY 

The designing of an AB-IDS using the AB-analysis approach presented in Section 3.3 for 

any protocol involves 3 steps;  
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1. Threat modelling analysis of the protocol 

2. Feature selection and protocol foot printing to characterize the behavior of the 

protocol;  

3. Use the selected set of features to develop machine learning models that 

characterize the normal behavior. 

In the first step, we apply the threat modelling methodology discussed in Section 3.2 to the 

protocol. We begin with obtaining a visual model (like state machines, architectures etc.) 

that describes the normal behavior for the protocol. The protocol state transition machine 

serves as the ideal candidate for the protocol’s visual model. Then attack surfaces are 

identified and impact analysis is performed on these attack surfaces. Mitigation strategies 

are devised to mitigate the threats from these attack vectors. 

 

In the second step, the attack surfaces are used to select features that characterize the 

behavior of the protocol. A subset of the features is passed through data structures that 

allow better data analytics and modelling of normal behavior of the protocol.  

 

In the third step, the protocol footprint data structure is used to create machine learning 

models that can separate normal behavior of the protocol from the abnormal during runtime 

analysis.  Figure 3.5 shows the AB-IDS design methodology. 
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Figure 3.5: AB-IDS design methodology 

 

3.4 PROTOCOL FINGERPRINTING DATA STRUCTURES  

A footprint data structure is needed to capture the state machine transitions made by the 

protocol. We use N-grams and Observation-flow data structures to effectively fingerprint 

the normal behavior of different protocols [46][47][49][50].  

 

• Observation-flow: 

It is a continuous flow of frames or packets between a source-destination pair sampled at 

specific intervals of time ‘t’. The observation-flow characterizes the state transitions made 

by the protocol. Figure 3.6. shows a simplified example of an Observation-flow for the Wi-
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Fi protocol. The flow begins with receiving Authentication frames (Auth), followed by 

Association request frames (Asso Req), followed by Data frames (Data) and ends with De-

Authentication frames (De-Auth). 

 

• N-gram: 

An N-gram is a sliding window of a pre-defined size, sampled from the observation-flow. 

The n-grams are used to model the temporal behavior of the target protocol, in this case 

the Wi-Fi protocol as shown in the Figure 3.6. {Auth, Auth, Asso Req, Data} forms an n-

gram of size 4. An n-gram can be of any size and n-gram size analysis experiment has to 

be performed to determine the size of the n-gram to be adopted for use in an IDS for a 

protocol. 

 

Figure 3.6: Observation-flow and n-grams 
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CHAPTER 4: DESIGNING AB-IDS FOR THE WI-FI PROTOCOL 

Wi-Fi protocol also known as the IEEE802.11[58] [59][60][61][62][63] is a wireless local 

area network protocol. It is the Ethernet’s equivalent for wireless networks. The protocol 

was first formalized in the year 1997. This protocol over the years of its existence has been 

upgraded and has incurred many changes. But most of these upgrades have been to enhance 

the data rate and the link quality of the network and little has been done to improve the 

security of the network. 

 

4.1 THE IEEE 802.11 STANDARD 

The Wi-Fi protocol [58] operates in the 2.4 GHz UHF and the 5 GHz SHF bands both of 

which fall under the category of ISM bands and hence have been sanctioned for unlicensed 

use. The original Wi-Fi protocol that was declared in the year 1997 specified bit rates of 1 

or 2 Mbits/s while specifying 3 alternate physical layer configurations which were Diffuse 

infrared at 1Mbps, Frequency Hopping Spread Spectrum (FHSS) at 1 Mbps or 2 Mbps, 

Direct Sequence Spread Spectrum (DSSS) at 1 Mbps or 2 Mbps. 

 

4.1.1 IEEE 802.11B 
This specification of the protocol [60] supports a maximum data rate of 11 Mbps using the 

same physical specifications as the original Wi-Fi protocol. This protocol supported the 

use of the DSSS in the 2.4 GHz UHF ISM band. Carrier Sense Multiple Access/ Collision 

Avoidance (CSMA/CA) is the protocol that is used to manage the media access. 
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4.1.2 IEEE 802.11A 
This standard was added to the original 802.11 protocol in the year 1999 [59]. This standard 

specified the operations of the Wi-Fi in the 5 GHz SHF supporting 52 subcarrier 

Orthogonal Frequency Division Multiplexing supporting data rates up to 54Mbps. 

 

4.1.3 IEEE 802.11G 
This standard was ratified to the original 802.11 protocol in the year 2003 [61]. This 

standard increased the data rate in the 2.4GHz UHF ISM band to 54Mbps. This was done 

by the adoption of the use of Orthogonal Frequency Division Multiplexing (OFDM). 

  

4.1.4 IEEE 802.11N 
This enhancement to the 802.11 protocol enhanced the data rates up to 600Mbps [62]. This 

increase in data rate is achieved by the use of multiple data streams with channels widths 

of 40MHz. It can operate in the 2.4GHz UHF ISM band and the 5 GHz SHF band. 

Moreover, one of the enhancements that have been added includes the use of multiple 

antennas that allows seamless maintenance of simultaneous data streams. 

4.1.5IEEE 802.11AC 

This standard was approved in the year 2014 [63]. This protocol allows each single link to 

have a throughput of 500 Mbps while the overall throughput for a multi-station WLAN 
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would be at least 1 Gbps. This increase in throughput is achieved by the use of wider 

channels, and up to 8 MIMO spatial streams and use of 256 QAM. 

 

Table 4.1: IEEE 802.11 Physical Layer Standards 

Release 
Date 

Standard Frequency 
Band 

Bandwidth Modulation Data Rate 

1997 
 

802.11 2.4GHz 20 MHz DSSS, FHSS 2 Mbps 

1999 
 

802.11b 2.4GHz 20 MHz DSSS 11 Mbps 

1999 
 

802.11a 5GHz 20 MHz OFDM 54 Mbps 

2003 
 

802.11g 2.4GHz 20MHz DSSS, OFDM 542 Mbps 

2009 
 

802.11n 2.4GHz, 5Ghz 20MHz, 40MHz OFDM 600Mbps 

2013 
 
 

802.11ac 5Ghz 40MHz, 
80MHz,160MHz 

OFDM 6.93Gbps 

 

 

4.2 DATA LINK LAYER AND FRAME STRUCTURE 

The 802.11 protocol breaks the continuous stream of data into smaller data units and sends 

it over the network encoded as payload data in the frames. The protocol also defines other 

types of frames that are responsible for the maintenance and management of the link. The 

general structure of the frame is as shown in the Figure 4.1. 
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Figure 4.1: Wi-Fi Frame structure 

 

• Preamble 

The preamble is the first set of bit sequence that follow the actual header. The preamble 

marks the start of the frame. The preamble allows the receiver frequency synchronization 

and receiver time synchronization. This helps the receiver extract the header and the data 

from the modulated signals that are sent over the channel. 

 

• Header 

The Wi-Fi Header is made up of a 2 Byte frame control field, a 2 Byte Duration ID, 48 bit 

long address field that includes the source and the destination address. The structure of the 

Wi-Fi frame header is as shown in the Figure 4.2. 
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Figure 4.2: Wi-Fi Header 

 

• Frame Control 

The frame control field in the Wi-Fi header is a 2 Byte long field that acts as a control for 

the frame. This field is further sub divided into sub fields as shown in the Figure 4.2. The 

sub fields include Protocol Version, Type of the frame, Subtype of the Frame, the direction 

of the frame movement, power management specifics and many more. A Wi-Fi frame can 

be of three type namely Management frame, Control Frame and Data Frame. 

 

• Management Frames 

Management frames more specifically are the link management frames that help in the 

control of the link. These frames setup the link and tear it down once the communication 

is complete. 

Management Frames are described below: 
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i. Authentication Frame 

An exchange of authentication frames takes place with an access point when the link 

setup between the access point and the user device takes place. It helps in 

establishment of the identity of the device connecting to the network. 

 

ii. Association Request Frame 

This Frame informs the access point that the device is ready to send data on the 

network and hence the access point allocates resources for the device. 

 

iii. Association Response Frame 

This frame is sent by the access point in response to the Association Request Frame. 

The response frame may be a positive response or a negative response to the device. 

 

iv. Beacon Frame 

This is the frame that is broadcast by the access point after a fixed interval of time. 

This frame informs the devices that are trying to connect to the access point of the 

various characteristics of the access point, like the name, the operating frequency, the 

transfer rates, Type of encryption scheme used and more. 
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v. De-Authentication Frame 

De-Authentication Frame is a complement of the Authentication frame. It is the frame 

that is sent over the network by the user device to the access point when the user 

device wants to disconnect from the network. 

 

vi. Disassociation Frame 

Disassociation Frame is a complement of the Association Frame. It informs the 

access point that it can de-allocate the resources that it had allocated for the device as 

the device no longer plans to use the network. 

 

vii. Probe Request Frame 

This frame is sent from a station to another station to get information about that 

station. 

 

viii. Probe Response Frame: 

Probe response frame is the response sent by a station for the probe request. 

 

ix. Reassociation Request Frame: 

Reassociation Request Frame is a frame that is sent when a device moves out of the 

range of one access point and moves into the range of another. The device sends a 

Reassociation request to another access point with signal strength more than the 

current access point. 
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x. Reassociation Response Frame: 

This is the response frame that is sent in response to the Reassociation Request. The 

response may be a positive response or a negative response. 

 

xi. Control Frame: 

The control frames are sent over the network and control the contention issues of the 

network. 

 

xii. Acknowledgement (ACK) Frame: 

On the reception of a data frames the device sends an acknowledgement frame to the 

source. 

 

xiii. Request to Send (RTS) Frame: 

It is the request to send that acts as an optional contention control over the network. 

 

xiv. Clear to Send (CTS) Frame: 

It is the optional Clear to Send Frame that is sent in response to the Request to Send 

Frame. 

 

xv. Data Frame: 

The Data frames are the frames that are used to move the data from the source to the 

destination. They generally carry higher level protocols in their data sections. 



60 
 

Table 4.2: Wi-Fi Frame Types 
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4.3 RELATED WI-FI WORK: 

Depending on the layer on which the Intrusion Detection System (IDS) focuses on, we can 

classify them into three  types: 1) Physical layer based IDS[64][65][66][67][68], 2) MAC 

layer based IDS [69][70][71][72], and 3) Physical layer and data link layer based IDS [73]. 

Most of the approaches to detect the physical layer attacks on the Wi-Fi network involve 

the use of signal strength or multiple antennas to detect the angle of the attack on the Wi-

Fi network. This method can efficiently detect attacks on the physical layer of the Wi-Fi 

network such as network jamming or detect attacks on the data link layer as in MAC 

address spoofing. This approach is complex because it takes into account the effects of 

signal fading, noise, changes in the medium, and effects due to the movement of the target 

and may negatively affect the performance of the intrusion detection system. The intrusion 

detection systems that operate on the data link layer use the data obtained from the Wi-Fi 

frame to detect attacks. Open source intrusion detection systems like Snort and most of the 

commercial Intrusion detection systems available like AirMagnet [74] and some detection 

engines in Air Defense [75] use the misuse detection approach to detect Wi-Fi attacks. But 

as this approach involves the use of attack signatures to detect attacks, modified attacks or 

zero-day attacks cannot be detected by these methods.  

 

In [76] the authors focus on the use of the round-trip time (RTT) of the signal to track down 

the location of the user from the access point. In [65] the authors use the signal strength of 

the received signal to track spoofing attacks. In their work, the authors profile the received 

signal using Gaussian Mixture models. Then the profiles that are generated by the use of 
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these models for each transmitter used to detect spoofing attacks on the networks. In this 

paper we present a similar approach to track the location of the attacking device. The 

system uses the signal strength to track the location of the attacker once the attack on the 

network has been detected. In our method, we use machine learning algorithms to generate 

profiles for different access points. 

 

Kolias et.al in [77] present an extensive study of the Wi-Fi protocol and the attacks possible 

on the Wi-Fi protocol. As a part of this study, that authors collected a family of datasets 

that not only have normal Wi-Fi traffic, but also collection of attack traces. This family of 

datasets is used to measure the performance of our approach. The authors also use 

classification-based algorithms to classify the attacks in the family of dataset they 

presented. They trained on the datasets marked in the family as training datasets and tested 

the performance of the models on the datasets marked as the testing datasets. This approach 

is not as effective as our approach as they train on training datasets in its raw form, while 

we use data structures like the n-gram and flows to extract the normal behavior of the 

protocol. 

 

Allahdadi et. al in [78], model the Wi-Fi protocol’s behavior using hidden Markov models 

(HMM) to model the state transitions of the Wi-Fi protocol. They use this approach to 

detect anomalies like access point shutdown, access point over load, noise, and flash crowd. 
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Usha et.al in [79], present an approach to perform anomaly-based intrusion detection on 

the Wi-Fi protocol. Usha et.al use normalize gain (NG), to select the optimal features from 

the AWID dataset to train semi-supervised clustering(SSC) algorithms to detect normal 

and abnormal behavior in Wi-Fi protocol. They were able to get different degree of 

accuracy on the different datasets, with upto 98% accuracy. 

 

Hamid et.al in [46] presented an approach, that used n-grams combined with bloom filters 

to detect attacks on Wi-Fi protocol. Hamid et.al presented the same approach as a part of 

his Ph.D dissertation. This work is an extension of the work done in that dissertation. The 

authors of this dissertation also noticed that the runtime IDS designed by Hamid et.al did 

not detect the minimal deauthentication attack presented in this research. The approach 

presented by Hamid used a threshold parameter that classified normal events from the 

abnormal. This threshold parameter needed manual tuning. This work uses machine 

learning models to detect attacks, thus eliminating the need to manually tune the threshold 

parameter. 

 

Satam et.al in [80] presented an approach, that used n-grams with machine learning to 

detect attacks on Wi-Fi networks. In that work, the authors applied their approach to detect 

attacks on single access point Wi-Fi networks and distributed Wi-Fi networks. They also 

presented an approach that could detect the location of the attacker once the attack has been 

detected. This work is an extension of the work done by Satam et. al. This work expands 

on the work by including a more diverse feature set, more extensive testing, with testing 



64 
 

on larger and more diverse datasets, including an external dataset not collected at the 

University of Arizona. This work tests the approach against all attacks possible on the Wi-

Fi protocol using five different machine learning algorithms instead of just a conjunctive 

rule-based algorithm as done in [80]. 

 

4.4 USING THE PROPOSED METHODOLOGY TO DESIGN AN AB-IDS FOR 

THE WI-FI PROTOCOL 

• Wi-Fi State Machine: 

The Wi-Fi protocols is a stateful protocol that is, each transition in the protocol follows 

state machine. The Wi-Fi state machine is as shown below. 

 



65 
 

 

Figure 4.3: Wi-Fi State machine. 

 

As shown in Figure 4.3 the Wi-Fi state machine has three different states. State 1 is the 

unauthenticated and unassociated state. In this state, Wi-Fi device is not connected to the 

network. State 2 is the Authenticated and Unassociated state. In this state, the device is 

connected to the network but the access point has no resources allocated to for that device. 

In the State 3 of operation, the device is Authenticated and is also Associated to the 

network. This allows the device to send the traffic over the network. 

 

• Identification of Attack surfaces, Impact and mitigation analysis for the Wi-Fi 

protocol 

State 1:
Unauthenticated,

Unassociated

State 2:
Authenticated,
Unassociated

State 3:
Authenticated,

Associated

Seccussful 
Authentication

Seccussful 
Association or
Reassociation

Disassociation
Notification

Deauthentication
Notification

Deauthentication
Notification

Class 1
Frames

Class 1&2
Frames

Class 1&2&3
Frames

Class 1:
Control: RTS, CTS, ACK, CF-END, CF-END+CF-ACK,
Management: Probe Request/Response, Beacon, Authentication, Deauthentication, ATIM
Data: Any frame with false ToDS and FromDS (0)

Class 2:
Management: Association Request/Response, Reassociation Request/Response, Disassociation

Class3:
Control: PS-Poll
Management: Deauthentication
Data: Any Data Frame
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Figure 4.3 highlights the state machine used by the Wi-Fi protocol. A careful analysis of 

this state machine also highlights the different attack surfaces that can be used to target the 

Wi-Fi protocol. Wi-Fi protocol is vulnerable to jamming attacks. Such jamming attacks 

pose a threat to all wireless protocols and can be easily detect systems monitoring signal 

strengths in frequencies. Attacks on the datalink layer of the Wi-Fi protocol performed 

through frame spoofing and pose a bigger threat to the Wi-Fi protocol. These attacks could 

be used to perform De-authentication attacks, Man in the middle attacks, Denial of Service 

Attacks (DoS), Fake authentication attacks etc. The above-mentioned attack surfaces exist 

on any device using Wi-Fi networks including IoT devices. 

 

Notwithstanding the above-mentioned attack vectors, a particular IoT device might have 

other possible attack vectors as a result of bad system design. For instance Sivaraman et.al 

[81] in their work identified IoT devices like the Withings Baby Monitor  that allows the 

user to use an IP camera to monitor his/her baby, exchanges image data over Wi-Fi in plain 

text, allowing the researchers to execute a man in the middle attack on the baby monitor; 

in Withings Smart Body Analyzer, a weighing scale to measure fat, heartrate and BMI the 

researchers observed that the users personal information was exchanged on Wi-Fi channels 

unencrypted. These attack vectors are a result of bad design or low computation power of 

the IoT device and hence make it easier for the attacker to execute attacks like man in the 

middle attacks. 
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• Feature Extraction 

While designing and implementing an AB analysis system, it is important to identify the 

operational point of the system at any instant of time. The process of identification of the 

operation point of the Wi-Fi network begins with collecting Wi-Fi frames in the network. 

Literature review and study of the Wi-Fi protocol characterized by Figure 4.3 allowed us 

to extract an initial feature set to characterize the operational point of the Wi-Fi protocol. 

This feature set is listed in Figure 4.4.  

 

i. Wi-Fi Flow/session extraction 

From a raw Wi-Fi frame observed on the Wi-Fi network, the frame_epoch_time, that 

is the time that frame was observed; Address 1-4 are the four different addresses from 

the Wi-Fi frame; frame_type, and frame_subtime is extracted from the raw frame. 

Wi-Fi traffic can be split into flows or sessions of time interval ‘t seconds’ based on 

frame source address and frame destination address pair. The frame source and 

destination addresses are extracted from the addresses 1-4 based on the type of Wi-

Fi frame and the working of the Wi-Fi protocol. 
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ii. N-Gram extraction 

Figure 4.5 shows how a Wi-Fi session is converted into a flow of n-grams. To 

transform the flow into n-grams, the frame_type and frame_subtype is hashed 

together to form a combined field called type. The n-grams are formed using a sliding 

window over the field type, where the size of the sliding window is equal to the size 

of the n-grams. 

 

Figure 4.4: Initial Feature Set  
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Figure 4.5: Feature set to fingerprinting data-structure mapping 

 

iii. N-gram counting 

During the initial stages of the training, we observe all possible unique n-grams for a 

n-gram size. While collecting this set of unique n-grams, we calculate the frequency 

of observation of each unique n-gram. 

iv. Features to build the machine learning model 

Figure 4.6 shows the set of features used to build the machine learning models. 

Frequency of each n-gram observed in a flow is used to get the probability of the 

flow.  
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According to Bayes theorem: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)  
(4.1) 

where,  

A and B are events 

P(A|B) is the probability of event A occurring given event B is true. 

Hence, for n gram of size n we have: 

𝑃(𝑊)|𝑊*
)+*) =

𝑃(𝑊*
)+*|𝑊))𝑃(𝑊))

𝑃(𝑊)+*|𝑊*)+,)
 

 

(4.2) 

where,	 

𝑃(𝑊)|𝑊*
)+*) is the probability of n-gram of size n given probability of n gram of 

size 1 to (n-1) 

𝑃(𝑊)+*|𝑊*
)+,) is the probability of n-gram of size (n-1) given probability of n gram 

of size 1 to (n-2) 

P(Wn) is the probability of n-gram of size 1 

 

Therefore, to obtain  𝑃(𝑊*
)+*|𝑊)): 

We use the smoothing model to calculate the probability of Flow. 

By using the Jelinek-Mercer smoothing model [121], we calculate the value of 

constant  l and calculate the probability of the flow:  

𝑃(𝑊*
)+*|𝑊)) = 𝜆𝑃(𝑊*

)+*|𝑊)) + (1 − 𝜆)𝑃(𝑊*
)+,|𝑊)) (4.3) 
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After obtaining the probability of the flow, we calculate the total number of n-grams 

in the flow, the ratio of new/unseen n-grams to the total number of frames in the flow, 

the ratio of number of management frames to the total number of frames in the flow, 

the ratio of number of control frames to the total number of frames in the flow, and 

the ratio of number of data frames to the total number of frames in the flow. 

 

Figure 4.6 Features used to build machine learning models 

• Building behavior models using machine learning 

Features presented in Figure 4.6 are used to build machine learning models that can identify 

the normal behavior from the abnormal behavior. Figure 4.7 shows the architecture of the 

Wi-Fi IDS, that was used to perform runtime analysis of the approach. As shown in Figure 

4.7 the IDS have 2 modules; Sniffer module and Behavior Authentication Module. 

i. Sniffer Module 

The Sniffer module is a libpcap [82] based implementation that collects the Wi-Fi 

traffic using the configured network card. The collected Wi-Fi traffic is stored in the 

memory using a linked list. 
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ii. Behavior Authentication Module(BAM) 

The BAM reads raw Wi-Fi packets from the shared database and performs analysis 

by converting the traffic into flows, extracting the n-grams, and uses machine 

learning models to classify the flows as either normal or abnormal. 

 

Figure 4.7: Wi-Fi IDS architecture 

4.5 ATTACKS ON WI-FI NETWORKS 

In this section we describe the attacks on Wi-Fi networks. The attacks listed here target the 

Wi-Fi encryptions systems (WEP, WPA, WPA2) and the availability of the Wi-Fi 

networks. Attacks on the physical layer of the Wi-Fi network are outside the scope of this 

work. 
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• Attacks targeting the availability of the Wi-Fi protocol 

All the attacks listed here take advantage of the fact that Wi-Fi management frames are 

transmitted unprotected and can be spoofed easily. 

 

i. Deauthentication attack 

Deauthentication attack is a Denial of Service (DoS) attack on the Wi-Fi network. As 

shown in the Figure 4.8, the attacker spoofs deauthentication frames being the access-

point and the victim, resulting in the victim getting disconnected from the Wi-Fi 

network. 

 

Figure 4.8 Deauthentication attack 
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ii. Disassociation attack 

As shown in the Figure 4.9, the attacker spoofs disassociation frames being the 

access-point and the victim, resulting in the victim getting disassociated from the Wi-

Fi access point.  

 

In a single access point Wi-Fi network, this results into a weak DoS attack (compared 

to deauthentication attack) as the transition from being disassociated to 

communicating on the Wi-Fi network is shorter than the transition from 

deauthenticated to communicating on the Wi-Fi network.  

 

In a distributed access point Wi-Fi network, this attack may result in a DoS attack on 

the whole distributed network by causing congestion on the network. When a 

disassociation attack is executed on a victim in a distributed Wi-Fi network, the 

victim will associate himself with another access point in the vicinity (on the same 

Distribute Wi-Fi network). Thus, the victim will not face any service disruptions. But 

when this attack is performed on a large number of users, this attack will severely 

degrade the capacity of the network to support the large number of users that it 

normally supports. This can be done by the attacker preventing users to use a few 

specific access points in the network, forcing the users to use other access points in 

the network that might already be overloaded with a lot of users. If this attack is done 

on a large enough number of users, it will cause the network to crash. 
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Figure 4.9 Disassociation attack 

 

iii. Fake Authentication attack/Authentication request flooding 

In this attack the attack tries to exhaust the client association table by sending a flood 

of authentication requests to the access point. This attack is shown in Figure 4.10. 

This attack exploits the fact that an access point can at any given point serves only a 

fixed number of users which is fixed by the physical memory limit on the access point 

or the value setup while configuration and an entry is inserted in the association table 

when an AP receives an authentication request (even if authentication is not 

completed). 
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Figure 4.10 Authentication Flood attack 

 

iv. Deauthentication broadcast attack 

In this attack the attacker spoofs deauthentication frames for an access point with 

broadcast address set as the client address. This attack is similar to the 

deauthentication attack described before, except it causes all the users to 

deauthenticate from the network. This attack might cause increase in network load as 

most users will try and connect to the same network at the same time. Figure 4.11 

shows the attack. 
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Figure 4.11 Deauthentication broadcast attack 

 

v. Disassociation broadcast attack 

In this attack the attacker spoofs disassociation frames for an access point with 

broadcast address set as the client address. This attack is similar to attack ii. except it 

will cause all the users to disassociate from the access point. This attack might cause 

an increase in network load as most users will try and connect to the same network 

at the same time. Figure 4.12 shows the attack. This attack will cause network load 

problems in distributed Wi-Fi networks. 
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Figure 4.12 Disassociation broadcast attack 

 

vi. Fake power saving attack 

In this attack, the attacker sends a frame with data set to null and the power saver bit 

set to 1. The Access Point (AP) will accept the frame thinking the user’s device wants 

to go into power saver mode and will start buffering all the traffic for the user. The 

TIM field in the next beacon will have the address of the user but will be ignored by 

the user as the user is not in power saver mode. Eventually, the AP will drop the 

buffered traffic based on its setting and memory load. Figure 4.13 shows the attack. 
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Figure 4.13 Fake power saving attack 

 

viii. CTS Flooding Attack 

In Wi-Fi Request to Send (RTS), Clear to Send (CTS) are optional frames that 

support a mechanism that can be used to control the congestion and access to the 

physical medium. When enabled, a legitimate user sends CTS frames before 

transmitting, thus telling other users to stay of the medium for a fixed amount of time. 

An attacker may flood the Wi-Fi network with CTS frames making other users wait 

and stay of air for a long time. Figure 4.14 shows the attack 
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Figure 4.14 CTS Flooding attack 

 

ix. RTS Flooding attack 

RTS flooding works similar to the CTS flood attack, where the attacker spoofs and 

floods the network with RTS frames, asking for large transmission windows, hoping 

to keep other legitimate users off air for those periods. Figure 4.15 shows the attack 
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Figure 4.15 RTS flooding attack 

 

x. Probe request flooding attack 

Wi-Fi protocol requires an AP to respond to all the probe request it receives. In this 

attack, the attack will flood the AP with probe requests, forcing it to respond to a 

huge amount of probe requests, thus bogging it down and making it incapable of 

responding to other users and legitimate probes, preventing users from connecting to 

the network. Figure 4.17 shows the attack. 
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Figure 4.17 Probe request flooding attack 

 

xi. Probe response flooding 

In the probe response flooding attack, the attack monitors the network and waits for 

the victim to send out a probe request to an AP. On seeing the victim send the probe 

request, the attacker floods the network with fake probe responses, filled with wrong 

information. Because of the volume of the received probes, the chances of the victim 

accepting the fake response frames is high. If the victim accepts the fake probe 

responses, it will not be able to connect to the AP as its setting will not match those 

of the AP. Figure 4.18 shows the attack. 
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Figure 4.18 Probe response flooding attack 

 

xii. Man in the middle attack using rogue access point or evil twin 

In this attack, the attack sets up an AP with the same name as the legitimate access 

point. When new and naïve users try joining the network, there is a high chance that 

they will join the network setup by the attacker. 

 

The attacker can force the users to join his fake network by performing 

deauthentication attack on the legitimate network. As most Wi-Fi device are set to 

automatically reconnect to another access point, they will give the rogue access point 
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or the evil twin preference over others (as it has the same SSID). Figure 4.19 shows 

the attack. 

 

Figure 4.19 Man in the middle attack using rogue access point or evil twin 

 

xiii. Beacon flooding attack 

In this attack, the attacker will spoof fake beacon frames for non-existent APs. This 

will cause the users to see a long list of APs available, making it harder for him to 

search the correct AP. Most GUIs limit the number of Aps that they list (in ascending 

order). This attack could result in the users, access point not being listed on the list 

of Aps. Figure 4.20 shows the attack. 
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Figure 4.20 Beacon flooding attack 

 

xiii. Modified Deauthentication attack 

This attack is a modification of Deauthentication attack that we created. In this attack, 

unlike the other deauthentication attack, where the attacker floods the network with 

deauthentication frames, the attacker spoofs deauthentication frames on the network 

in a timely manner. The attacker monitors the network traffic. In our experimentation 

we observed that when one deauthentication frame is spoofed to the network and the 

user (while both the devices are communicating), they both respond to the 

deauthentication frames while trying to keep the communication alive. If an attacker 
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spoofs another frame during this response, it harder for the two devices being attacked 

to recover. We were able to successfully deauthenticate Wi-Fi devices with as low as 

8 frames in a 10 second window, that is a very small attack footprint when compared 

to a few hundred frames spoofed in 3-4 seconds by the other deauthentication attacks. 

Figure 4.21 shows the attack. 

 

Figure 4.21 Modified deauthentication attack 

 

• Attacks targeting the encryption protocol 

Following are the attacks that target the encryption used to secure data over Wi-Fi network. 
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i. ChopChop Attack 

This attack targets the WEP protocol, as in WEP CRC-32 was wrongly utilized for 

message integrity and WEP allows message reply. While performing this attack, the 

attacker chops the last byte of the encrypted data that he/she sniffed and XORs it with 

a chosen value, with the hope that it will lead to a sequence valid for a specific ICV. 

Then, the attacker injects this modified frame into the network, AP itself tells the 

attacker if his guess was correct or wrong w(obligated by the protocol). The attacker 

repeats the process until the access point tells him he was correct. 

 

ii. Fragmentation Attack 

The Wi-Fi protocol allows Wi-Fi frames to be fragmented into smaller fragments, if 

the packet being sent over the network is larger than the maximum length. In the 

fragmentation attack the attacker tries to achieve the same result as the chopchop 

attack, but by sending lesser frames on the Wi-Fi network. The attacker guesses the 

first 8 bytes of the keystream with high probability and takes advantage of the 

fragmentation mechanism to construct frames of size 8 bytes and send them to the 

network with broadcast address. The AP accepts the frames and broadcasts the frames 

on the network. The attacker sniffs new encrypted data, but knows the message, 

allowing the attacker to get keystream by simple xoring. 
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iii. Caffe Latte Attack 

Caffe latte allows the attacker to get the IV when the user is away from the target Wi-

Fi network. Most Wi-Fi devices are actively looking for known Ap’s (by probing) 

and try and automatically connect to an AP with similar name. The attacker observes 

such probes from the user’s device and creates an evil twin with the same SSID. The 

user’s device will automatically try to connect with the AP. As WEP does not verify 

the AP, it will get authenticated and send out DHCP requests. On failure to get an IP 

via DHCP, the user’s device will allocate itself a local IP and send ARP request 

(encrypted) to the AP. The attacker floods the user with ARP responses, while 

modifying the encrypted ARP packet to guess the IP address. If the attacker is able 

to guess the users default IP address, then the user’s device will respond with an ARP 

response. Now that the attacker knows the users default IP address, he can send his 

own ARP requests to the user to get more encrypted ARP responses to help figure 

out the IV. 

 

iv. Hirte Attack 

Hirte attack is a combination of fragmentation and Caffe latte attack, where the 

attacker responds to the gratuitous ARP packet with fragmented ARP packets. Thus, 

the user’s device responds with more fragmented packets allowing the attacker to 

figure out the IV. 
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v. FMS Attack 

This attack aims at deriving the WEP shared key. When a weak IV is used to encrypt 

the frames, the attacker can guess byte n+1, when he has knowledge of the first byte 

of the keystream and the first n bytes of the key. 

 

vi. KoreK Family of Attacks 

This family of attacks is similar to FMS except statistical analysis is performed to 

vote amongst the probability of different keys. 

 

vii. PTW Attack 

PTW attack work in the same way as FMS, but cracks WEP encryption in a more 

efficient manner by the use Arp injections to speed up the process; 

 

viii. ARP Injection Attack 

ARP injection itself is not an attack on the Wi-Fi protocol. ARP injections allow the 

attackers to speed up the process of WEP encryption cracking like it was done in 

PTW attack.  

 

ix. Dictionary Attack 

This attack is used to target WPA/WPA2 encryptions using the PSK configuration. 

The sniffs the 4-way handshake, by either observing a new user join the network or 

deauthenticating the current user and forcing him to rejoin. Once the handshake has 



90 
 

been captured, the attacker computes the PMK, PTK, and MIC while parsing through 

the dictionary. If the passphrase from the dictionary use to calculate the PMK is 

correct, then the MIC will match the MIC sniffed from the legitimate handshake. 

 

4.6 EXPERIMENTAL RESULTS AND EVALUATION 

• Experimental setup for collecting the Normal data 

Figure 4.21 shows the testbed used to collect the normal data. The testbed consists a 

monitoring node that operates in monitor mode and collects the data from the Wi-Fi 

channels. The data was collected on the second floor of the Electrical and Computer 

Engineering building at the University of Arizona, that at any given time has around 6-7 

access points with 15-200 users using the network depending on the time of the day and 

the month of data collection. For example, during the semester hours, the network has 

around 200 users at a given time, while during the break hours the number of users 

decreases drastically. We collected 3 normal training datasets over the period of the 

development of this IDS. Table 4.3 shows the characteristics of these 3 datasets. The first 

dataset was collected in June 2016 (called Dataset1 henceforth) over a period of 9 days, 

the second dataset was collected over a period of 14 days in August 2017 (called Dataset2 

henceforth), the third dataset was collected in November 2018 (called Dataset3 henceforth) 

over a period of 38 days. 
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Figure 4.21: Experimental setup for collecting the Normal data 

  

Table 4.3 Characteristics of the normal datasets 

 

 

• Experimental setup for collecting the Attack data 

Figure 4.22 shows the experimental setup used to collect the attack data. The Wi-Fi access 

point is a Linux machine acting as an access point with using hostapd [83], with Atheros 

chipset. Table 4.4 shows the list of attacks used to collect the attack traffic. All the attacks 

that were tested were targeting the availability of the attack network and none of them 

focused on targeting the encryption protocol. Most of the attacks were executed using 

Aircrack-ng attack library. The flooding-based DoS attacks were executed using 

hping3[84] and bash shell commands. 
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Figure 4.22: Experimental setup for collecting attack data 

 

Table 4.4 List of attacks in the attack dataset 

 

 

• Experimental setup for testing the runtime performance of the IDS 

Figure 4.23 shows the experimental setup while testing the runtime operations of the Wi-

Fi IDS. The test-bed consists of an access point with multiple devices acting as user 

devices, and 2-3 different devices acting as attacking devices.  
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Figure 4.23: Experimental setup for performing runtime tests 

 

• External dataset to evaluate the approach 

The approach was tested on the AWID [77] family of datasets. We performed detection 

analysis on AWID-ATK-R, that is an attack database collected on the testbed shown in 

Figure 4.24, and has attack traffic of 14 different attacks, listed in Table 4.5. Table 4.6 

shows the characteristics of the AWID dataset. 
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Figure 4.24: AWID dataset data collection environment 
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Table 4.5 AWID-ATK attacks list 

 

 

Table 4.6 Characteristics of AWID dataset 
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• Experimental Analysis 

In the remainder of this section, we present the experiments performed on the Wi-Fi IDS. 

i. Experiment 1- N-gram size analysis: 

This experiment helps answer the design choice made while building the IDS. It 

answers the question related to the n-gram size, and most importantly it answers the 

question on how much data is required to obtain a complete modeling of the normal 

behavior of the Wi-Fi protocol. This experiment was also performed on the Dataset 

1,2,3 as shown in Figures 4.25, 4.26, 4.27, 4.28, 4.29, 4.30. 

 

Figures 4.25,4.26, 4.27 show the total number of unique n-grams observed over time 

for flow sizes of 10 seconds, 60 seconds, and 3600 seconds for n-gram sizes of 1-10. 

In these three figures we see a similar trend, where there is a steep rise in the number 

of unique n-grams initially. Then the graph flattens out as a limiting value is reached. 
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Figure 4.25: Total number of unique n-grams observed over the time for a 

flow size of 10 seconds 

 

 

Figure 4.26: Total number of unique n-grams observed over the time 

interval for a flow size of 60 seconds 
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Figure 4.27: Total number of unique n-grams observed over the time 

interval for a flow size of 3600 seconds 

 

Figures 4.28,4.29, 4.30 show the unique n-grams observed per day over time. We can 

see that most of the unique new n-grams were collected over a period of 10 days and 

we conclude that a data collection time of 12-15 days is enough to gain a complete 

understanding of the normal behavior of the Wi-Fi network. 
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Figure 4.28: Unique n-grams observed per day for a flow size of 10 seconds 

 

 

Figure 4.29: Unique n-grams observed per day for a flow size of 60 seconds 
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Figure 4.30: Unique n-grams observed per day for a flow size of 3600 seconds 
 

For experimental purposes, we chose an n-gram size of 4, and from here on all the 

experiments for the Wi-Fi IDS will be performed with an n-gram size of 4. 

 

ii. Experiment 2: Performance of the machine learning algorithms  

In this experiment, we observed the performance of different machine learning 

models. A training set was sampled from the dataset3 of 100,000 entries to train the 

Isolation Forest and 30,000 entries for the other classification algorithms. The 

classification algorithms need a few malicious entries to work properly and hence the 

training file with 30,000 entries was appended with 15 abnormal entries from the 

attack dataset for the deauthentication attack. Table 4.7 shows the performance of 

these different models. The fake beacon flood attack from AWID dataset was 

excluded from this test as it does not violate the Wi-Fi protocol, and is an attack on 
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the user of the Wi-Fi networks. From the results, we can observe that the algorithms 

perform really well when detecting attacks targeting the Wi-Fi protocols operations. 

The performance for the different algorithms drops when trying to detect caffe latte 

attack, hirte attack, and the evil twins attack. Caffe Latte attack and the hirte attack 

target the WEP encryption protocol. As described in section 4.5 Caffe latte and hirte 

attack, that is a type of Caffe latte attack, are executed in the absence of a legitimate 

access point. The attacker uses the probes sent out by the user’s device to figure out 

the name (SSID) of the vulnerable AP and sets up a new AP with that name. The 

unconnected Wi-Fi device used by the user thinks there is a known AP in the vicinity 

and connects to the attacker’s AP. The attacker then proceeds to extract the WEP key 

using the vulnerabilities in the WEP protocol. The method in which these two attacks 

are executed, they do not break the functioning of the Wi-Fi protocol till the attacker 

starts spoofing packets to break the WEP key, justifying the bad performance of the 

models. To execute the evil twins attack, the attacker sets up an AP with the same 

name as the legitimate AP and hopes that the users will connect to his AP instead of 

the legitimate AP. This makes it impossible for the models to detect this attack as the 

attackers AP is behaving like any other legitimate AP, justifying the performance of 

the models in table 4.7. 

 

The results for the model obtained from Isolation forest shows that the model is able 

to detect attacks it has not seen, while giving low false positives when looking at the 

normal data. 
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Overall, the high accuracy and the performance of all the models on seen traffic and 

unseen traffic is attributed to the normal behavior modelling done during the feature 

selection and extraction process. In our approach the normal behavior modelling 

happens as a part of the system design, feature choice and the feature extraction 

process, which can be quantified by the performance of these models. 

 

Table 4.7: Performance of the machine learning models 

 

 

iii. Experiment 3: Runtime analysis of the IDS: 

For the runtime analysis of the approach, a simple conjunctive rule based modelled 

as describe by Satam et.al in [80] was used. The performance of the IDS was tested 

with the attacks listed in table 4.6. The IDS was tested over a period of two days and 
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was able to detect all the attacks successfully with no false positives or negatives (on 

the tested attacks). 

 

The results of this test may seem in contradiction with the results shown in table 4.8, 

but can be justified by the fact that, attacks can span over multiple flows. Say an 

attack spans over two flows, and the IDS detects only one of the flows as abnormal 

and classifies the second flow as normal, the IDS still detected that attack.  

 

Table 4.8: Attacks used to test the runtime performance of the Wi-Fi IDS 

 

 

iv. Experiment 4: Runtime analysis of the IDS with high interference: 

The goal of this experiment was to measure the performance of the IDS when facing 

high frame drop rates. To perform this experiment, the sniffer module was configured 
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to drop frames in flows following a gaussian distribution. Figure 4.31 and 4.32 shows 

the performance of these experiments. 

 

Figure 4.31 shows that the intrusion detection system gives zero false positives till 

80% frame drop rate. As the frame drop rate increases beyond 80% to 93%, there is 

a steady increase in the false positives till the system stops performing at 93% frame 

drop rate. 

 

Figure 4.31: False Negative versus Frame drop rate 

 

Figure 4.32 shows that that the algorithm can classify all the attacks correctly at all 

times till the frame drop rate is as high as 66%. Beyond 66% frame drop rate we 

observed a steady decline in the algorithms ability to classify the attacks accurately. 
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Figure 4.32: Correct Attack Classification (percentage) versus Frame drop rate 
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CHAPTER 5: DESIGNING AB-IDS FOR THE DNS PROTOCOL 

Domain Name System (DNS) is used to associate a domain name with an IP address. It is 

one of the most prominently used protocols over the internet, used by for domain name 

resolution by users during user to user communication and server to server communication. 

With the current trends in the growth of Internet of Things (IoT), wherein all user 

appliances ranging from cars to microwave ovens will be connected to the internet, the 

DNS protocol is set to play an even more important role, making it important to secure it. 

In this chapter, we apply the IDS design methodology to the DNS protocol. 

 

5.1 DNS PROTOCOL 

DNS [85] [86] is a distributed naming system that utilizes a set of hierarchically connected 

DNS servers while maintaining a client server model. It is used to translate the human 

readable domain names to IP addresses. The DNS passes the queries hierarchically over a 

tree like domain space network and the query for a particular domain travels up the network 

till it reaches the authoritative server for the requested domain. Then the server sends a 

reply down the tree to the requesting source with a DNS reply. This tree network is 

subdivided into smaller networks called zones beginning at the root zone. Each zone has 

at least one authoritative name server that provides authoritative replies for that zone. A 

zone may contain multiple domains. An authoritative server may sometimes delegate its 

task of answering queries for a domain in its zone to some other DNS server that is 

authoritative to a sub zone. Generally, the host of a network has a list of root authoritative 
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servers. These servers are used as a query initiation point. These servers then pass the query 

up the tree until it reaches the correct authoritative DNS server which then generates a 

response to the query and sends it back to the local DNS server which in turn sends the 

response back to the requesting machine’s resolver. Generally depending on the Time to 

Live (TTL) of the DNS reply and the type of the DNS server involved, the reply that a 

server receives is cached by the DNS server for future query replies. The TTL of the cached 

records is reduced with time. This cached record of DNS query-reply is flushed out when 

the TTL of that particular record reduces to zero. A DNS server can be configured to query 

recursively. It can also be configured to just forward the queries that it receives. Figure 5.1 

gives an example of DNS query sample process. In figure 5.1, the user sends query for the 

ece.arizona.edu to the next hop DNS server. As the local DNS system does not have the 

answer cached locally, the query is sent up and down the DNS chain till the authoritative 

DNS server for the domain, ece.arizona.edu is reached. The authoritative DNS server 

responses to the query with a DNS answer packet directed to the User. 
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Figure 5.1: A sample Domain Name resolution 

 

Generally, a DNS query is of a particular type (example Type A- 32 bit IP address). A list 

of the general queries in a network is given in Table 5.1. The reply to a query can be of any 

size. If the reply to a query is more than the size of the MTU then the reply is fragmented 

into multiple packets. At the user end, a DNS resolver is responsible for resolving the DNS 

information for a particular system. A resolver may be implemented by an operating system 

or locally by a web browser. A resolver is generally configured to cache the replies to the 

queries that it sends over the network for future use till the TTL for the reply is greater than 

zero. 
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Table 5.1: Common DNS message Types 

Type Description 

A A 32-bit IPv4 address, most commonly used to map hostnames to the IP 

address of the host 

AAA A 128-bit IPv6 address, most commonly used to map hostnames to the IP 

address of the host 

NS Specifies the authoritative name servers for related zones. 

CNAME Alias of one name to another canonical name. The DNS lookup will 

continue by retrying the lookup with the new canonical name 

MX Maps a domain name to a list of message exchange agents for that domain. 

SOA Specifies authoritative information about a DNS zone, including the 

primary name server, the email of the domain administrator, the domain 

serial number, and several timers relating to refreshing the zone. 

TXT Originally for arbitrary human-readable text in a DNS record. 

PTR Pointer to a canonical name. Unlike a CNAME, in PTR DNS processing 

does not proceed, just the name is returned. The most common use is for 

implementing reverse DNS lookups. 
 

 

Typically, the DNS protocol operates over the UDP. The DNS packet has a header as 

shown in Figure 5.2.  
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Figure 5.2: DNS message format 

 

5.2 RELATED WORK 

In general, there are two main approaches to protect the DNS protocol against cyber-

attacks. The first approach is the use of DNSSEC [87] in which the DNS protocol has been 

significantly changed by adding security features The second approach is to use an 

intrusion detection system (IDS) to detect attacks that are launched over the network 

[88][89][90]. The use of DNSSEC to secure the DNS protocol has certain problems like 

broken validations which give results similar to self DoS [8], and the system generates 

large number of DNS responses for a small increase in the DNS protocol security [91]. 

 

The goal of the IDS methods is to analyze normal and abnormal behavior of the DNS traffic 

to detect threats against the DNS protocol [92][93][94][95]. Since our approach focuses on 

detecting attacks against the DNS protocol, we will focus our analysis at different levels of 
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the Domain Name hierarchy during a period of time in order to model the temporal 

transitions of normal DNS traffic. Other techniques focused on developing statistical 

models for the DNS traffic without any detection approach. But there are other methods 

[92][93][95] which have proposed anomaly detection mechanisms for DNS protocol. In 

what follow, we highlight the main approach used by these techniques. 

 

In [92], normal traffic of DNS protocol is monitored and some statistical thresholds for 

each protocol parameter are calculated during the training phase. Then during the detection 

phase, values of these parameters will be compared with the specified thresholds to detect 

abnormal traffic. This approach will be heavily influenced by the traffic context. For 

example, considering the time and the location of the deployment of the system the traffic 

of the system will change. Consequently, it is difficult to come up with a fixed threshold 

for the system and that results in high false positive alarm rate. 

 

In [93], the authors describe an approach in which they monitor the header information in 

order to evaluate the statistical properties of various header parameters with respect to an 

n-dimensional normal distribution. The covariance of the parameters is compared with a 

threshold value to measure the anomalous behavior in case of an attack. They also perform 

payload scanning and analysis to detect attacks that are exploiting protocol vulnerabilities. 

As discussed previously this approach will be affected by the traffic context. Moreover, the 

value of the threshold that is difficult to determine the optimal value. 
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In [95] the authors presented an approach in which the flow of DNS traffic between the 

source and the destination DNS server is used to detect attacks. As a part of their approach, 

the authors present different models that can detect attacks on the DNS protocol. For 

instance, to detect cache poisoning attacks they use the flow based approach to separate the 

queries and requests in a flow and calculate if the count is below a threshold. To detect 

tunneling attacks using DNS they measure the traffic statistics at standard DNS ports which 

is indicative of tunneling activity. Also, they present Cross-Entropy Anomaly detection 

model which they use to detect anomalies in DNS packet sizes. Where they use cross 

entropy to detect changes in the sizes of packets given the normal distribution of packets. 

They perform decision fusion of these different models to give one conclusive result of the 

alerts received from the model. 

 

In [96] the authors present methods to monitor DNS traffic in large networks. They use the 

concept of standard flow and extended flow to detect DNS attacks on large networks. They 

present the use of access control lists in combination with the standard knowledge 

presented in a DNS flow to detect malware infected devices that operate rouge DNS 

resolvers. They also present a statistical approach to detect changes in networks DNS 

behavior patterns. 
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5.3 USING THE METHODOLOGY TO DESIGN AB-IDS FOR THE DNS 

PROTOCOL 

• DNS state machine 

The proposed system is developed based on the assumption that DNS follows a stateful 

approach in which generally consecutive DNS queries and replies from a source are 

dependent on each other and the protocol moves through a well-defined state machine to 

perform its request and reply messages. The DNS protocol in none of its implementations, 

keeps track of the protocol state machine. As shown by [47], the DNS state machine can 

be built dynamically by observing and analyzing the DNS messages as shown in Figure 

5.3. 
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Figure 5.3. DNS protocol state diagram 

 

• Identification of Attack surfaces, impact and mitigation analysis of the DNS 

protocol 

As explained in Section 5.1, DNS protocol is a Query response protocol, where the user 

sends a query for a domain name, and the system responds back with an answer. The user 

side application that frames the question and interprets the answer is called DNS resolver 

or resolver. The DNS resolvers use the DNS packet fields QNAME, destination and source 

port numbers and DNS transaction IDs to match a DNS query to the DNS response. This 
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is the primary attack vector to target the DNS protocol. As the DNS protocol trusts all the 

responses/answers it receives from the network (as long as the ports and transaction ids 

match), leaving room for attacker to craft DNS responses to a server of their choice. 

 

• Feature extraction 

Figure 5.4 demonstrates how the features QNAME (which is used to identify the session), 

and QType, Type (which identify the state transitions) are extracted from the DNS 

message, this approach is the same as the approach used by Hamid et.al in his Ph.D. 

dissertation and Satam et.al in [47]. 

 

Figure 5.4: DNS message Feature Extraction 
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i. Session Generation: 

DNS sessions are created by sampling DNS traffic in windows of t seconds based on 

Qname and resolver IP address. Packet with no resolver IP address are treated as a 

separate session. 

 

ii. n-gram formation 

DNS sessions are converted into a flow of n-grams by matching queries to responses 

based on transaction ids, source and destination ports and IP addresses. The type of 

the query and the type of response are combined together to get the type of the gram. 

In case of responses with multiple records, the type of the first record is used to obtain 

the type of the gram. N-grams are ordered using the query timestamp or response 

timestamp when query time stamp is unavailable for that particular packet. In case a 

query receives two separate responses, the first response is combined with the query 

to get the first gram, while the seconds response is treated as response to a null query 

to get the second gram. 

 

iii. n-gram counter 

During the initial n-gram learning phase, we try to learn all possible normal n-grams, 

the n-gram counter counts the frequency of each unique n-gram observed. 
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iv. Features to build the machine learning model 

Figure 5.5 shows the feature set used to build the machine learning models. A set of 

unique n-grams and their frequencies is collected. This set of unique n-grams and 

their frequencies is used to obtain the values of features shown in figure 5.5. For a 

DNS flow, the frequency is obtained by adding the observed frequencies of all n-

grams in that flow. Totalcount is the total number of packets in the DNS flow. Qratio 

is the ratio of DNS question packets to the total number of packets in the flow. Aratio 

is the ratio of DNS answer packets to the total number of packets in the flow. Oratio 

is the ratio of number of non-question and answer packets to the total number of 

packets in the flow.  

 

Figure 5.5 Features used to build the machine learning model 

• Building behavior analysis models using machine learning 

Machine learning algorithms are used to build models based on the feature set shown in 

Figure 5.5. Figure 5.6 shows the architecture of the DNS IDS what was designed using this 



118 
 

approach. The IDS has a packet sniffer module that monitors the network and collects the 

DNS traffic and stores it in a database. The behavior analysis unit (BAU), converts these 

packets in flows. The flows are then converted to n-grams and fed to the machine learning 

algorithm to classify if the event is normal. 

 

Figure 5.6: System Architecture 

 

5.4 ATTACKS ON THE DNS PROTOCOL 

• Birthday Attack 

This attack uses the Birthday paradox [97] to target the DNS server, by increasing the 

chances of a spoofed DNS response being accepted by the DNS server. Figure 5.7 

highlights the Birthday attack [97]. In the first step, the attacker sends a large number of 

queries to the nameserver for a particular domain name. In the second step, at the same 

time, the attacker spoofs responses to the queries he sent nameserver. At some later time, 
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the victim sends a query for the target domain name, to which the Nameserver responds 

with the fake information he received from the attacker. 

 

Figure 5.7: Birthday Attack 

 

• DNS Amplification Attack 

The DNS amplification [98] is a Distributed Denial of Service (DDoS) [99] attack, that 

exploits open DNS resolvers to overwhelm a target server or network with an amplified 

amount traffic. The DNS Amplification attack takes advantage of the fact that DNS queries 

are smaller in size compared to DNS answers. The attacker is able to generate a large 

amount of traffic in the form of DNS responses for the small number of DNS queries he 

generates. Figure 5.8 show a DNS amplification attack. The attacker begins the attack by 

spoofing DNS request with the victim’s credentials to open DNS resolvers, which answer 

the queries with responses to the target of the attack. 
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Figure 5.8: DNS Amplification Attack 

 

• DNS Hijacking Attack 

Figure 5.9 shows the DNS hijacking attack [97]. In DNS hijacking attack, the attacker is a 

computer on the local network of the victim. As shown in figure 5.9, the attacker sees the 

victim send a query for a domain name. The attacker responds to the query with his own 

response which is accepted by the victim as a legitimate response. The legitimate response 

arrives after the attacker’s response and is ignored by the victim. 
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Figure 5.9: DNS Hijacking Attack 

 

• DNS Flooding Attack 

DNS flooding attack [97] is DDoS attack, where the attacker floods the DNS servers of a 

target domain name to disrupt the ability of the DNS server to service legitimate DNS 

queries. Figure 5.10 shows the DNS flood attack. DNS flood attacks are gaining 

prominence with the rise of IoT devices as it is easy to infect IoT devices with malware to 

generate DNS flooding attacks using botnet, Mirai [100] [101] malware and the attack on 

Dyn in October 2016 [102] being perfect examples. 
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Figure 5.10 DNS Flooding Attack 

 

5.5 EXPERIMENTAL EVALUATION 

This section presents our experimental evaluation of the approach.  

• DNS Testbed 

The network traffic collection and experimentation of this approach happened on two 

different testbeds shown in figure 5.11 and 5.12. As the work presented in this chapter is 

an extension of the work presented by Hamid et.al in his Ph.D. dissertation, collected 

traffic, and some analysis performed in that work were reused while extending this work. 
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Figure 5.11: Test Bed 1 topology for UACAC-DNS dataset 

 

Figure 5.11 shows the DNS testbed used to collect traffic by Hamid et.al in his Ph.D. thesis. 

This dataset consists of real network traffic traces combined with auto generated traffic 

that is collected by monitoring the local recursive name server at the NSF center for Cloud 

and Autonomic Computing (NSFCAC). This dataset was used for obtaining the set of 

unique n-grams and getting the n-gram frequencies. Table 5.2. and 5.3 highlight some 

characteristics of the dataset collected on the testbed in Figure 5.11 over a month. As shown 

in Figure 5.11, 6 Linux machines were used to generate normal traffic in addition to the 

traffic generated by the users of subnet 1. The traffic generators used Perl scripts, to mimic 

real traffic by visiting the top 10 domains of that time. As this traffic was collected on a 

local network secured by a firewall, this traffic is considered to be normal. 
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Table 5.2 Number of queries and replies in normal dataset 1 

 

 

Table 5.3 Percentage of message types in normal dataset 1 

 

The second testbed shown in Figure 5.12 consisted DNS traces obtained from normal 

internet usage of members of NSF center for Cloud and Autonomic Computing 

(NSFCAC).  
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Figure 5.12: Test Bed 

 

The network on an average consisted of 16 desktop computers, a number of mobile devices 

connected to the local wireless local area network, and the traffic from the center’s private 

cloud severs (at any time, at least 20 virtual machines are connected to the network). Tables 

5.4 and 5.5 show characteristics of the dataset collected from this testbed. This dataset was 

used to extend work presented in [47] to include machine learning algorithms for detection 

of normal and abnormal behavior. 

Table 5.4 Number of queries and replies in normal dataset 2 
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Table 5.5 Percentage of message types in normal dataset 2 

 

 

• Attack Dataset 

The attack dataset was collected by executing the attacks mentioned in section 5.4 on 

different physical and virtual machines in the NSFCAC network. Table 5.6 shows some 

characteristics of the attack dataset. 

Table 5.6 Number of queries and replies in attack dataset 

 

• Experiment 1- N-gram size analysis 

This experiment was performed by Hamid et.al as a part of his Ph.D. dissertation and is 

being presented here to ensure completeness of the experimental analysis. This experiment 

helps answer the question, “How much training is required for the DNS protocol?” and 

justifies picking of a n-gram size. 

 



127 
 

For all experiments pertaining to the DNS protocol here on, the flow or session size will 

be 10 seconds. 

 

Figure 5.13 presents the total number of unique n-grams observed in comparison to total 

extracted n-grams, where we can see that for different n-gram sizes, there is a limiting 

value of total number of unique n-grams seen (that is less the total number of permutations 

for that n-gram size). 

 

Figure 5.13 Total number of unique n-grams observed compared to total 

extracted n-grams 

Figure 5.14 presents the ratio of new distinct n-grams seen over a week. From the graph in 

figure 5.14 we can observe that for the lower n-gram sizes (1-3ngrams), most of the new 

n-grams observed on the first day of training, corelating with the graph in figure 5.13. 
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Figure 5.14: Ratio of new distinct n-grams seen over a week 

• Experiment 2- Measurement of performance of the models 

In this experiment, we measure the performance of the machine learning models built 

during the training phase. We decided to make an n-gram choice of 5 n-grams for this 

analysis. Table 5.7 shows the results of this experiment. The performance was measured 

using 10-fold cross validation. 
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Table 5.7 Performance of the machine learning models 

 

• Experiment 3-Birthday Attack 

As a part of this experiment, Birthday attack [97] was launched in the network. In this 

attack, the attacker sends a large number of queries to the local DNS server followed by a 

large number of replies to these DNS queries. This attack takes advantage of the birthday 

paradox to successfully execute the attack. The intensity of the birthday attack was varied 

from 30 queries to 1000 queries. The attack was successfully detected for all the cases. 

 

• Experiment 4- DNS Amplification Attack 

In this experiment, DNS amplification attack [98] was launched in the network. The DNS 

amplification is a DDoS attack in which the objective of the attacker is to flood the system 

being attacked with replies from various DNS servers, that results into a denial of service 
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attack. The DNS amplification attack intensity varied from 10 queries to 10000 queries. 

The attack was successfully detected in each case. 

 

• Experiment 5- DNS Hijacking Attack 

Under this experiment, DNS hijacking attack [97] was launched in the network. In this 

attack, the attacker listens onto the local network and whenever it sees the local DNS server 

send out a query, it immediately replies to that query with a predetermined answer. Thus 

resulting in the domain being hijacked. When the authentic reply arrives, it is ignored by 

the local DNS server. This attack was performed on the network a number of times and a 

100% detection rate for this attack. 

 

• Experiment 6- DNS Flooding 

As a part of this experiment, a DNS tunneling attack [103] was executed in the network. It 

was observed that the attack was detected in each case. 

 

• Experiment 7- Runtime Analysis of the IDS 

As a part of this experiment, we allowed the IDS to run on the testbed for two days, while 

performing attacks at random intervals on it. It was observed that the IDS had an attack 

detection rate of 97% with low false positive alarm rate of 0.01397% and false negatives 

of 3%.  
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CHAPTER 6: DESIGNING AB-IDS FOR THE HTML PROTOCOL 

The world wide web has grown exponentially over the previous decade in terms number 

of websites hosted on the world wide web, as well as the number of users accessing these 

websites. In fact, web usage has become pervasive to touch all aspects of our life, economy 

and education. These rapid advances have also significantly increased the vulnerabilities 

of websites. According to White Hat security’s “2015 Website Security Statistics Report” 

more than 86% of all websites have one or more critical vulnerability and the likelihood of 

information leakage is 56%. In this chapter we apply our AB-IDS methodology to design 

IDS’ to detect malicious HTML files. 

 

6.1 HTML PROTOCOL 

The internet’s information services have become pervasive and touch all aspects of our 

life, economy, education, entertainment, and more. The internet currently hosts more than 

a billion websites and has an even more in the number of daily users [104]. A wide range 

of heterogeneous devices (mobile or stationary) access the internet for various 

functionalities and with the introduction of Internet of Things (IoT), the number is expected 

to grow to more than 50 billion devices [105]. Most of the content on the internet is hosted 

on websites which are basically Hyper Text Markup Language (HTML) webpages. Web 

browsers which are applications to access the world wide web, request web servers for 

HTML pages when they visit a website. HTML pages allow the content provider to give 

the access to a variety of content including images, data, files, videos etc. HTML pages are 
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composed of HTML elements, that give it the uncanny flexibility to host a wide variety of 

data and file types. In an HTML page, multiple HTML elements are organized in a tree 

structure with the root element always being the ‘html element’. An HTML element always 

begins with a start tag and ends with an end tag. The start tag is indicated by 

“<elementname>” and the endtag is indicated be “</elementname>”. HTML has different 

elements defined for different datatypes that can be included in the HTML file. Figure 6.1 

shows an example HTML file, and figure 6.2 lists popular HTML elements. The web 

browser receives HTML files like the one shown in Figure 6.1 as a document from the 

webserver. The HTML file is parsed by the web browser to convert it into a document 

object model (DOM). The screen rendering of the content is performed on the DOM. 

 

Figure 6.1: HTML file example 
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Figure 6.2: Popular HTML elements 

 

6.2 RELATED WORK 

Xu et.al in [106] conducted a survey of different techniques to obfuscate malicious 

javascripts, performing a detailed study of performing obfuscation on malicious 

javascripts. They have also performed a study by selecting top 20 anti-virus software and 

observed that they had an average detection rate of 86.5% for non-malicious javascripts, 

but the performance dropped down to 55.3% when randomization obfuscation was 

performed, 45.7% when data obfuscation was performed, 0% when encoding obfuscation 

was performed  when different obfuscation techniques were used.  

 

Canfora et.al. in [107] proposed an approach which builds machine learning models on 

features extracted by performing static and dynamic analysis to detect malicious 

javascripts. The authors extract features like script execution time, calls to the javascript 

functions, and number of function calls made by the javascript code via dynamic analysis 
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using Chrome developer. They also extract static analysis features like the number of urls 

accessed by the javascript from the file. Using these features, they build machine learning 

models using J48, LADTree, NBTree, Random Forest, Random tree, and RepTree.  

 

Yoo et.al. in [108] present a two phase approach to detect malicious webpages. The first 

phase involves use of misuse detection to detect known malicious webpages, and depends 

on a one class svm based model to detect new malicious webpages in phase 2. They report 

to have a significantly high malicious webpage detection rate at the cost of higher false 

positives on the normal webpages. 

 

Likarish et.al in [109], presented a classification-based approach to detect malicious 

javascripts. In [109], the authors used unigram and bigram-based feature extraction 

approach; similar to natural language text processing, to extract features like %of human 

readable characters, %whitespace etc. to train models using Naïve Bayes, ADTree, SVMs 

and RIPPER algorithm. They were able to train a model with a precision of 0.92 and recall 

of 0.742. 

  

6.3 ATTACKS ON HTML FILES 

In general, there are four common ways for inserting malicious code into otherwise 

legitimate HTML files and XML Files: 
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• Hidden Iframes  

An Iframe (Inline Frame) is a way of loading one web page inside another, usually from a 

different server. It can be useful in creating online applications. Malware writers can make 

the included page hidden by making the Iframe as small as 0 pixels square, give them 

coordinates that make the frame off the page, or set their property to “hidden”. Then 

anything can be run inside the Iframe such as JavaScript or a remote malicious web page 

downloading code. The following example demonstrates hiding an Iframe by making it 

one-pixel square: 

 

<iframesrc="http://www.MaliciousWebsite.com" 

width="1" height="1"></iframe> 

 

Another interesting example of a hidden Iframe involves redirecting visitors to a website 

hosting a Java exploits (103.27.108.45) which downloads and decodes a variant of Poison 

Ivy hosted at: hxxp:img//103.27.108.45//js.php. Notice the iframe height and width is “0”. 

 

<div class=”views-field views-field-body”> 

<divclass=”field-content”><p> 

 

<iframe height=”0” 

src=http://103.27.108.45/img/js.php width=”0”> 

</iframe></p> 
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• Malicious Reference  

Malicious reference is a method used to link one page to a malicious page or to download 

a malicious file when clicked on. There are several tags that can be modified in either the 

HTML or CSS file that could cause these actions. The first method could be accomplished 

using the “meta” tag inside the HTML Head. This would look something like the following 

for malicious redirects: 

 

<meta http-equiv=”location” 

content=”url=http://www.MaliciousSite.com” /> 

 

The second method is the <a> tag (hyperlink) which would be inserted into the HTML 

body or CSS file. There are several attributes for the <a> tag that would be useful for 

malicious intent. The first would be the href attribute (link’s destination). This will try to 

open the remote page. The following example will try to open “www.maliciousSite.com” 

when you click the “Wonderful Website” hyperlink. 

 

<ahref=”http://www.maliciousSite.com”?>Wonderful 

Website</a> 

The third method also uses the <a> tag, but with the download attribute. This will cause 

the filename following the attribute to be downloaded onto the client’s computer. The 
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following example will download attack.php from the remote host and rename it to 

“UsefulFile”. Notice that either an IP or URL can be used as the location of the file. 

<ahref=http://213.171.193.5?20/MaliciousAttk/attack.php 

download=”UsefulFile”> 

 

 

• Malicious Scripts  

There are many ways to use JavaScript for malicious intent. The code in a JavaScript 

function is not executed when the function is defined. It is executed when the function is 

invoked. There are almost unlimited ways to use JavaScript maliciously and a few of them 

are in the following list: 

 

1. Read files from local drive 

2. Fill up a local drive 

3. Access or replace files on the local machine  

4. Close or open windows 

5. Launch an application 

6. If the browser allows, read browser history or cookies 

7. Exploit bugs in a browser. If the browser allows, load another document or script 

from a different domain 
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• Abnormal Construction  

This category contains several different malicious activities such as: seldom used tag 

names, HTML structure inconsistencies, and malicious obfuscation.  

 

6.3 HTML Protocol Analysis 

We have used two methods to perform the data analytics: Static Analysis and Dynamic 

Analysis. Figure 6.3 shows our approach to build the HTML IDS. 
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Figure 6.3 HTML IDS architecture 

 

6.2.1 STATIC ANALYSIS OF HTML FILES 

Static analysis involves analyzing the file without executing it. This analysis is easy to 

perform when the source code is available. HTML files are transferred as documents to the 
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client, making them an ideal target for static analysis. In static analysis, the structural 

features like the number of ‘a’ tags in the HTML file, the Keyword to work ratio etc. help 

differentiate between the normal HTML files and the malicious HTML files. In the 

following sections, we present our IDS that performs static analysis of HTML files. 

6.2.1.2 USING THE METHODOLOGY TO DESIGN AB-IDS FOR THE HTML 

PROTOCOL TO PERFORM STATIC ANALYSIS 

• Feature selection methodology 

The literature review and an understanding of the HTML files presented us with a large set 

of features that could be collected from an HTML file as shown in table 6.1.  
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Table 6.1: Features List 

 

We decided to perform feature selection on this feature set to reduce the number of features 

to be extracted from the HTML file. The feature selection algorithm used as a part of this 

approach is based on the feature extraction algorithm (FEA) presented by Qu et al.[110]. 

In this algorithm, information theory is used to identify the most important and relevant 

features. There are several contributing factors that can be used in information theory to 

extract relevant features and can be summarized as follows: 
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i. Entropy  

Entropy is a measure of uncertainty of the random variable. It is determined by the 

equation:       

 (6.1) 

 

ii. Conditional Entropy  

Conditional entropy quantifies the amount of information needed to describe the 

outcome of a random variable Y given that the value of another random variable X 

is known. Given discrete random variables X with domain X and Y, the conditional 

entropy of Y given X is defined as: 

𝐻(𝑌|𝑋) = 5𝑝(𝑥)𝐻(𝑌|𝑋 = 𝑥)
8∈:

 (6.2) 

 

iii. Mutual Information  

Mutual information is a measure of the amount of information that one random 

variable contains about another random variable. Mutual information is used to 

reduce the uncertainty about one random variable given knowledge of another. The 

larger the mutual information, the more information the feature can provide. The 

definition of mutual information can be described as: 

 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (6.3) 

 

( ) ( ) log ( )
x

H x p x p x
yÎ

= -å
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iv. Decision Independent Correlation (DDC) 

It is the measure of the redundancy of information between two features Xi and Xj 

with respect to an analytic objective Y. It can be computed as [110], 

 

𝑄>?𝑋@,𝑋BC =
𝐼(𝑌; 𝑋@) + 𝐼?𝑌; 𝑋BC − 𝐼(𝑌; 𝑋@, 𝑋B)

𝐻(𝑌)  
(6.4) 

 

In the feature selection algorithm shown in Figure 6.4, we use the evaluation factor e(s) to 

guide the selection process. This measure specifies a subset in which the mutual 

information with respect to the decision function is incentivized but decision dependent 

correlation between the features is penalized. 

 

𝑒(𝑆) =
∑ 𝐼(𝑌; 𝑋B)∀B∈HI

𝐻(𝑌) − 5 𝑄>(𝑋@
∀@,B	@JB	@,B∈HI

, 𝑋B) 
(6.5) 

 

 

Figure 6.4: Feature selection algorithm. 

The FSA algorithm shown in Figure 6.4 consists of two functional modules. The first one 

is focused on removing irrelevant features. We use a user-defined threshold 𝛿*to determine 
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which feature is relevant to the final decision (lines 1 and 2). In this part of the algorithm, 

irrelevant features are removed from the original feature set. The second part focuses on 

eliminating redundancy from the features to be selected (lines 4 to 8). We quantify a final 

state criterion as the distance of the subset evaluation metric 𝑒(𝑆) from the user-defined 

threshold 𝛿, (line 5). For each pass, the feature 𝑋L is chosen which satisfies two conditions 

simultaneously. The first one is that feature 𝑋L should be the most relevant one compared 

with the rest of features in the working set (line 6 (a)). The second one is that feature 𝑋L 

should have the least correlation with all the features in the goal set 𝐺 when compared with 

the other features in the working set 𝑊 (line 6 (b)). 

 

• IDS for HTML static analysis 

Figure 6.5 shows the general approach for anomaly analysis of HTML files. Below we will 

be describing the main modules shown in Figure 6.5: 

 

i. Parser 

The parser receives the html file as an input. It is the job of the parser to verify that 

the input file is an html file. The parser then parses the html file and extracts the data 

pertaining to the features from the html file. The extracted data is then passed to the 

validator block. 
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ii. Validator  

The validators job is to verify the data that has been extracted from the parser block 

is valid and correct and has the correct format. 

 

iii. Classifier  

The classifier module utilizes several classification models that are obtained as a 

result of machine learning on the data collected during the training phase. The 

classifier classifies the output from the validator as either normal or abnormal. We 

will be discussing the classifiers in detail in the experimental results section. 

 

 

Figure 6.5: General architecture of HTML file static analysis 

 

The IDS operates in two distinct phases: Training phase and Operational phase. 
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i. Training phase: 

In the training phase the html file data is used to develop models to classify the normal 

structure of the html files. This phase mainly involves, feature extraction, data 

processing and model development.  

 

ii. Operational phase: 

During the operational phase, the models that have been developed during the 

training phase are used to determine if the html file observed is normal or abnormal. 

In the next section, we present our experimental results and evaluation of the 

approach when applied to more than 10,000 HTML files. 

 

6.2.1.4 EXPERIMENTAL EVALUATION AND RESULTS 

A. Feature description 

Based on literature review and initial pre-analysis of 10,000 normal and 103 malicious 

files, we identified 32 features shown in Table 6.2. As shown in the table, there are two 

types of features: Discrete and Continuous features. Discrete features are those that can be 

represented by a finite set of values. Continuous features have numerical values 

representing a large numerical range. For each discrete feature, a computable value was 

assigned. But for continuous features, it is infeasible to use the continuous values in our 

data analytics and consequently, the continuous parameters are discretized.   
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Table 6.2: Features List 

 

 

A set of 13242 normal and 133 abnormal html files were collected from different sources 

as a part of the training and testing of our approach. Of the 13242 normal html files and 

133 abnormal html files, 1000 normal and 30 abnormal files were used in the training phase 

and the remaining files were used to evaluate the detection rate and accuracy of our 

approach.  
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The feature selection algorithm discussed in 6.2.1.2 under feature selection methodology 

is used on the complete dataset (13242 entry points) in order to reduce the number of 

features to be analyzed. Table 6.3 shows the mutual information of each of the features 

with respect to determining whether or not a file being evaluated is normal or abnormal 

while Table 6.4 shows the reduced feature set obtained after running the FSA algorithm. 

 

Table 6.3: Features with mutual information 
Number Features Mutual 

Information 
0 url_total_forms 0.01986 
1 url_external_forms 0.05322 
2 url_total_links 0.60971 
3 url_external_links 0.34647 
4 url_max_length_links 0.56511 
5 url_min_length_links 0.37321 
6 url_ave_length_links 0.27798 
7 url_unique_tags 0.19475 
8 url_total_tags 0.61442 
9 url_total_scripts 0.23598 
10 url_external_scripts 0.17694 
11 url_obfuscated_html 0.25174 
12 url_native_functions 0.07446 
13 url_set_timeout 0.06745 
14 url_total_iframes 0.04181 
15 url_hidden_iframes 0.02192 
16 url_external_iframes 0.05045 
17 url_total_objects 0.00188 
18 url_keyword_count 0.33242 
19 Keywords to Words Ratio 0.64045 
20 White Space Ratio 0.73919 
21 url_script_length 0.8289 
22 url_string_modification 0.02299 
23 url_dom_modification 0.07651 
24 url_interaction_events 0.01004 
25 url_event_attachments 0.26367 
26 url_total_redirects 0.12739 
27 url_string_length 0.5767 
28 url_max_entropy 0.79029 
29 url_min_entropy 0.08365 
30 url_total_entropy 0.85154 
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Table 6.4: Reduced feature set 

Number Features Mutual 
Information 

2 url_total_links 0.60971 
3 url_external_links 0.34647 
4 url_max_length_links 0.56511 
7 url_unique_tags 0.19475 
8 url_total_tags 0.61442 
9 url_total_scripts 0.23598 
10 url_external_scripts 0.17694 
18 url_keyword_count 0.33242 
30 url_total_entropy 0.85154 

 

 

B. Machine learning model training 

The training data set (containing 1000 data points) obtained after feature extraction is 

processed for data discretization. Some of the features used in the characterization of the 

html file are continuous and hence the values of these features need to be discretized. The 

discretization is performed by using an unsupervised attribute discretization filter 

[111][112][113]. The discretized training data set is then normalized by the use of a 

normalization filter [114][115]. Various classification-based machine learning algorithms 

were used to obtain the appropriate machine learning models that can be used to classify 

the normal and abnormal files. The best results were obtained using a classifier that fuses 

the results of multiple classifiers. The results from the different classification models will 

be discussed in the experiments section. 
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i. Support vector machine (SVM) classifier: 

A linear support vector machine (svm) based classification model was built using the 

Spark engine [116]. The weights that were used for the convex function 𝑓 are shown 

in Table 6.5. Table 6.5 also lists the accuracy of the classification algorithm on the 

test case. Where the convex function 𝑓 is given in Equation 6.6, 

 

f(w) ≔ λR(w) +
1
n5L(w; xW, yW)

Y

WZ*

 
(6.6) 

𝑤ℎ𝑒𝑟𝑒	𝑦 = 𝑟𝑒𝑠𝑢𝑙𝑡	𝑎𝑛𝑑	𝑥@𝑖𝑠	𝑡ℎ𝑒	𝑣𝑒𝑐𝑡𝑜𝑟 

 

𝐿(𝑤; 𝑥, 𝑦) ≔ max	{0,1 − 𝑦 ∗ 𝑤p𝑥} (6.7) 

 

𝑅(𝑤) ≔	
1
2 |
|𝑤||,, (6.8) 

 

 

Table 6.5:  Support Vector Machine Results 
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ii. Logistic regression classifier: 

The logistic regression-based model was built using logistic regression classifier 

provided by the spark engine. The weights used by the classifier are presented in 

Table 6.6. This algorithm performed with an accuracy of 0.9819. The logistic 

regression classifier used the following equations, 

 

𝑓(𝑧) =
1

1 + 𝑒+u (6.9) 

𝑤ℎ𝑒𝑟𝑒𝑧 = 𝑤p𝑥  

 

Table 6.6: Logistic Regression Results 

 

iii. C4.5 Classifier: 

The java based implementation of the C4.5  algorithm provided by the weka machine 

learning tool [117][115][118][113][119] called j48 was used to build a c4.5 based 
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classifier model. The best c4.5 based model had a true positive rate (TPR) of 89.3% 

while a false positive rate (FPR) of 0.004 with respect to classification of abnormal 

files, further details have been presented in Table 6.7. 

 

iv. Regression classifier: 

The java-based implementation of regression classifier provided by the machine 

learning tool weka was used to build this model. The regression classifier used m5 

[8] algorithm to build models for each of the individual classes. This classification 

model had a true positive rate (TPR) of 43.7% and a false positive rate (FPR) of 0% 

with respect to the classification of abnormal files, further details have been 

provided in the table 6.7 below. 

 

v. Bagging Classifier: 

The java-based implementation of the bagging classifier provided by the machine 

learning tool weka was used to build this model. This classification model had a true 

positive rate (TPR) of 50.5% and a false positive rate (FPR) of 0% with respect to 

the classification of abnormal files, further details have been provided in Table 6.7. 

 

vi. Fusion-based Data Analytics Algorithm 

In our effort to improve the overall accuracy and efficiency of our data analytics 

algorithms, we have developed a model to fuse the results of different classifiers as 

shown in Figure 6.6. A combined classification model was built using the 
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classifications results of the C4.5 classifier, regression classifier, and bagging 

classifier. The fusion of the classifier results was performed in a manner such that 

the results of each of the classifiers acted as new features to the data set and the 

resultant data set was classified using a C4.5 based classification model. This 

combined classification model had a true positive rate (TPR) of 99% and a false 

positive rate (FPR) of 0.8% with respect to the classification of abnormal files, 

further details have been provided in Table 6.7. 

 

Figure 6.6: Fusion stair structure 
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Table 6.7: Classifier Results 

 

Table 6.8 compares the results of all the classifiers. The fusion classifier performs 

the best with true positive rate of 99% with false positive rate of 0.8%. 

Table 6.8: Classifier comparison 

Classifier Accuracy TP-rate FP-rate 
Support vector machine 0.9789 - - 

Logistic regression classifier 0.9819 - - 
C4.5 classifier 0.9964 0.893 0.004 

Regression classifier 0.9995 0.437 0 
Bagging classifier 0.9995 0.505 0 

Fusion-based analytics algorithm 0.9923 0.99 0.008 
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6.2.2 DYNAMIC ANALYSIS OF HTML FILES 

Dynamic analysis analyzes the actions performed by the HTML file once it is opened in a 

web browser, allowing us to perform a detailed functional analysis on the file’s actions. In 

our approach, we open HTML files in a sandboxed environment. Sophisticated HTML 

scripts might have embedded malicious JavaScripts which have hyperlinks pointing to 

phishing websites or perform iframe attacks. Fine grained data analytics can detect these 

types of sophisticated attacks by analyzing the execution traces of the HTML file when it 

is running within a browser. Figure 6.7 shows our implementation (architecture) of the 

dynamic analysis of HTML files that was carried out in an isolated sandbox using Cuckoo 

sandbox tool [120].  

 

 

Figure 6.7: HTML Dynamic Analysis. 
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For experimental purposes, we chose the sandbox to host a Windows VM. In this approach, 

we analyze the temporal behavior and transitions of the HTML execution modules when 

they run within a given operating system and Internet browser environment. We believe 

this approach is the strongest detection technique because we analyze the binary version of 

the executable file where malicious codes, iframes or JavaScript obfuscations cannot be 

hidden from the dynamic data analysis. 

 

The effects of HTML files on the Windows operating system are examined by observing 

the running time of DLL file calls. These DLL file calls are generated by the web browser 

upon execution of the HTML file. This approach involves analyzing the statistics of normal 

execution flows of DLL calls when the web browser is viewing non-malicious HTML files. 

We used the methodology presented in chapter 3 to create an on the fly a state machine 

that represents all possible DLL call sequences, that is invoked by the browser for normal 

HTML files. Consequently, any abnormal DLL call transitions, which are triggered by the 

existence of malicious codes, will be immediately detected by the dynamic analysis. Figure 

6.8 shows the architecture of a general web browser, such as the Microsoft Internet 

Explorer. 
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Figure 6.8. The architecture of an IE web browser 

 

 

Figure 6.9. Dll State transition diagram for the Internet Explorer 8 

 

Upon viewing a normal HTML file, a web browser will need to initialize the execution 

environment, setup the appropriate cryptography, desktop environment, and then proceed 
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to display the content of the HTML file. We have developed a tool based on (Cuckoo) to 

obtain all the Dll calls and their temporal sequences that are invoked to view a normal 

HTML file as shown in Figure 6.9. However, upon execution of a malicious HTML file, 

the web browser will deviate from the normal state machine pathway, ultimately resulting 

in abnormal behavior that can be detected by the dynamic analysis tool.  

 

As a part of a test to better understand the behavior of the dynamic model when HTML 

files are run on the system, we carefully analyzed the mapping over the state transitions of 

3 normal and 3 abnormal files. The state transitions for the normal files are shown in figure 

6.10. 

 

Figure 6.10:  Normal State Transitions 

It was observed in figure 6.11 that all 3 malicious files made the same transitions. 
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Figure 6.11:  State transitions by malicious files. 

The system was trained using DLL flows from 1000 normal HTML files and 40 abnormal 

files with a variety of malicious behavior including malicious javascripts, malicious links, 

hidden i-frames etc. A classification model was developed using an implementation of 

Adaboost. 

 

The obtained classification model was tested on a test set which consisted of 4623 normal 

HTML files and 119 HTML abnormal files. The overall accuracy was observed to be 

99.7259%. Table 6.9 highlights the observed results. The high false negatives can be 

attributed to the inability of the dynamic analysis approach to classify HTML pages with 

malicious links as malicious. Because we do not parse the HTML pages recursively, the 
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malicious HTML page is never opened resulting in a page that contains a link having a 

normal behavior. 

Table 6.9: Detailed Accuracy Summary 

True Positive False Positive Precision Class 

95.8% .2% 93.4% Abnormal 

99.8% 4.2% 99.9% Normal 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

In this chapter we summarize the AB-Analysis methodology developed I this thesis and its 

main research contributions and discuss future work. 

7.1 RESEARCH SUMMARY 

In this dissertation we reviewed the concepts of machine learning, Intrusion detection 

systems, and Machine learning. We then presented an architecture for IoT and cyber 

physical devices. Using this architecture, we presented our threat modelling methodology. 

We then used our methodology for designing Intrusion Detection Systems for 

IoT/networking protocol. 

 

The methodology has following steps: 1. Threat modelling analysis of the protocol; 2. 

Feature selection and protocol foot printing to characterize the behavior of the protocol; 3. 

Using the correct features develop and test machine learning models that characterize the 

normal behavior. We then applied this methodology to three protocols: 1. Wi-Fi protocol, 

2. DNS protocol, 3. HTML protocol. 

 

For the Wi-Fi protocol, the methodology was used to analyze the attack vectors for the Wi-

Fi protocol and select features to model the normal behavior of the Wi-Fi protocol. N-

grams and observation flows were used to model the normal behavior of the Wi-Fi 

protocol. Machine learning models were built to differentiate normal Wi-Fi flows from 
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abnormal Wi-Fi flows. During the runtime analysis and evaluation of the Wi-Fi IDS, it was 

shown that the IDS had no false positive and false negatives. 

 

For the DNS protocol, the methodology was used to analyze the attack vectors for the DNS 

protocol and select features to model the normal behavior of the DNS protocol. N-grams 

and observation flows were used to model the normal behavior of the DNS protocol. 

Machine learning models were built to differentiate normal DNS flows from abnormal 

DNS flows. During the runtime analysis and evaluation of the DNS IDS, it was shown that 

the IDS had an attack detection rate of 97% with low false positive alarm rate of 0.01397% 

and false negatives of 3%. 

 

For the HTML protocol, the methodology was used to analyze the attack vectors for the 

HTML protocol. Based on this analysis, we designed two IDS’ to detect threats on the 

HTML protocol. The first IDS performed static analysis on the HTML file, by extracting 

static features from the HTML file. Machine learning algorithms were used to train 

machine learning models to detect normal and malicious files. We showed that our 

approach detected malicious HTML files with a true positive rate of 99% and a false 

positive rate of 0.8% for malicious files. The second IDS performed dynamic analysis on 

the HTML file, by opening the HTML file in a sandboxed environment. The state 

transitions made by the browser were tracked, can machine learning models were built to 

classify normal HTML files from the abnormal. We showed that the dynamic analysis IDS 
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had a true positive rate of 95.8% and false positive rate of 0.2% for abnormal files and 

99.8% true positive rate and 4.2% false positive rate for Normal files. 

7.2 RESEARCH CONTRIBUTIONS 

• We developed a methodology to design micro IDS’ to detect attacks on IoT/ 

networking protocols, with low false positives and false negatives. 

• We developed a new novel data structures that we refer to as observation flows and n-

grams that were used to accurately characterize the normal behavior of the IoT/ networking 

protocol. 

• We developed intrusion detection systems that can detect attacks with high accuracy 

on Wi-Fi, DNS and HTML protocol. Our experimental results and evaluation showed that 

our IDS’ can detect known and unknown attacks with high detection rates and low false 

alarms. 

 

7.3 FUTURE WORK: 

To improve the IDS design methodology presented in this dissertation, we propose to 

perform the following research tasks: 

• Root cause analysis 

Once an IDS detects an attack, steps have to be performed to locate the attack, identify its 

type and then stop or mitigate the impact of the detected attack. Root cause analysis focuses 

on analyzing and identifying the essential factors that caused the attack. We need to 
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develop a methodology to perform automated root cause analysis on the intrusions detected 

by the ML-IDS. This methodology will identify the vulnerabilities that are exploited by the 

attack, establish a timeline of all the steps taken by the attack, and then extract the causal 

factors attributing to the attack. 

 

The challenges involved in designing of the root cause analysis methodology are many 

folds. The primary challenge is to analyze large amounts of data in a short amount of time 

to extract causal relationships between the data and the observed behavior of the detected 

attacks.  

 

• Attack Resolution and Mitigation 

This dissertation presented a methodology to design intrusion detection systems for 

IoT/network protocols. The next logical step is to develop a methodology to prevent attacks 

on these protocols. The Intrusion Protection System (IPS) will take advantage of the root 

cause analysis methodology to identify the main cause of the detected attack and the steps 

to stop the attack and/or prevent its successful completion. The development of an IPS 

methodology will result in increased network availability, faster remediation of attacks on 

the IoT devices and networks, flexibility in system deployment, and a comprehensive threat 

protection. 
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• Proactive actions and counter measures 

The wide spread acceptance of IoT and the rise of medical IoT devices or IoMT, has 

brought the need for securing these devices 24 by 7 (not just using reactive approaches like 

IDS/IPS). ISO/IEC 27000 and ISO/IEC 27030 present cyber security best practices and 

Internet of Things standards for best practices. There is a critical need to design a 

methodology that will check and ensure compliance of IoT devices with these standards. 

 

• Unsupervised and Adaptive Machine learning 

The current work involved collection of data and training the system in a supervised 

fashion. But the normal behavior of protocols can change over time. This change is 

especially noticeable with the continuous improvement in the IoT technology and their 

capabilities; for instance the use of HTML files has changed over the years and the normal 

behavior models need to account for these changes. The current work needs to be extended 

to include unsupervised and adaptive learning, to enable the normal behavior models to 

change as the usage of the protocols change. 

 

• Integrate network threat detection with other systems to provide all around cyber 

security 

As a part of this research, we used protocol state machines and data structures like n-grams 

and flows to characterize the normal behavior of the networking protocols. But, modern 

computing infrastructure exposed to a wide range of external sources over communication 

networks and internal threats. We can argue that modern infrastructure is more susceptible 
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to insider attacks, making it necessary to secure the infrastructure from both external and 

internal threats. The footprints developed to detect threats on networks (n-grams and flows) 

need to be extended to build a comprehensive footprint (Cyber DNA), that can characterize 

the normal behavior of the complete system; allowing detection of not just network threats 

and attacks, but also host based attacks, malwares and user impersonation attacks. 
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